Showing 20 articles starting at article 881

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Environmental: Water

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

It's the spin that makes the difference      (via sciencedaily.com)     Original source 

Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.

Chemistry: Biochemistry Energy: Batteries Environmental: General Geoscience: Environmental Issues
Published

Road to better performing batteries using less critical raw materials      (via sciencedaily.com)     Original source 

Researchers are developing batteries that can charge faster, offer more stable storage and are made of sustainable materials that are widely available. In doing so, they offer a cheaper alternative to lithium-ion batteries that consist of rare materials and have a high CO2 -footprint.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Physicists develop more efficient solar cell      (via sciencedaily.com)     Original source 

Physicists have used complex computer simulations to develop a new design for significantly more efficient solar cells than previously available. A thin layer of organic material, known as tetracene, is responsible for the increase in efficiency.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing
Published

Accelerating the discovery of single-molecule magnets with deep learning      (via sciencedaily.com)     Original source 

Single-molecule magnets (SMMs) are exciting materials. In a recent breakthrough, researchers have used deep learning to predict SMMs from 20,000 metal complexes. The predictions were made solely based on the crystal structures of these metal complexes, thus eliminating the need for time-consuming experiments and complex simulations. As a result, this method is expected to accelerate the development of functional materials, especially for high-density memory and quantum computing devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Plastic recycling with a protein anchor      (via sciencedaily.com)     Original source 

Polystyrene is a widespread plastic that is essentially not recyclable when mixed with other materials and is not biodegradable. A research team has now introduced a biohybrid catalyst that oxidizes polystyrene microparticles to facilitate their subsequent degradation. The catalyst consists of a specially constructed 'anchor peptide' that adheres to polystyrene surfaces and a cobalt complex that oxidizes polystyrene.

Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Environmental: Water
Published

Even very low levels of pesticide exposure can affect fish for generations      (via sciencedaily.com)     Original source 

Fish exposed to some pesticides at extremely low concentrations for a brief period of time can demonstrate lasting behavioral changes, with the impact extending to offspring that were never exposed firsthand, a recent study found.

Biology: Biochemistry Biology: General Biology: Marine Biology: Microbiology Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Decline in microbial genetic richness in the western Arctic Ocean      (via sciencedaily.com)     Original source 

Researchers analyzed archival samples of bacteria and archaea populations taken from the Beaufort Sea, bordering northwest Canada and Alaska. The samples were collected between 2004 and 2012, a period that included two years -- 2007 and 2012 -- in which the sea ice coverage was historically low. The researchers looked at samples taken from three levels of water: the summer mixed layer, the upper Arctic water below it and the Pacific-origin water at the deepest level. The study examined the microbes' genetic composition using bioinformatics and statistical analysis across the nine-year time span. Using this data, the researchers were able to see how changing environmental conditions were influencing the organisms' structure and function.

Chemistry: Biochemistry
Published

Improving traffic signal timing with a handful of connected vehicles      (via sciencedaily.com)     Original source 

With GPS data from as little as 6% of vehicles on the road, researchers can recalibrate traffic signals to significantly reduce congestion and delays at intersections.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

A new glue, potentially also for you      (via sciencedaily.com)     Original source 

Hydrogels are already used in clinical practice for the delivery of drugs, and as lenses, bone cement, wound dressings, 3D scaffolds in tissue engineering and other applications. However, bonding different hydrogel polymers to one another has remained a challenge; yet it could enable numerous new applications. Now, researchers have pioneered a new method that uses a thin film of chitosan, a fibrous sugar-based material derived from the processed outer skeletons of shellfish, to make different hydrogels instantaneously and strongly stick to each other. They used their approach to locally protect and cool tissues, seal vascular injuries, and prevent unwanted 'surgical adhesions' of internal body surfaces.

Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Anoxic marine basins are among the best candidates for deep-sea carbon sequestration      (via sciencedaily.com)     Original source 

Anoxic marine basins may be among the most viable places to conduct large-scale carbon sequestration in the deep ocean, while minimizing negative impacts to marine life. As we explore ways to actively draw down the levels of carbon in the atmosphere, sending plant biomass to these barren, oxygen-free zones on the seafloor becomes an option worth considering.

Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues Space: Astrophysics Space: General
Published

Measuring neutrons to reduce nuclear waste      (via sciencedaily.com)     Original source 

Nuclear power is considered one of the ways to reduce dependence on fossil fuels, but how to deal with nuclear waste products is a concern. Radioactive waste products can be turned into more stable elements, but this process is not yet viable at scale. New research reveals a method to more accurately measure, predict and model a key part of the process to make nuclear waste more stable. This could lead to improved nuclear waste treatment facilities and also to new theories about how some heavier elements in the universe came to be.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Advanced artificial photosynthesis catalyst uses CO2 more efficiently to create biodegradable plastics      (via sciencedaily.com)     Original source 

A research team that had previously succeeded in synthesizing fumaric acid using bicarbonate and pyruvic acid, and carbon dioxide collected directly from the gas phase as one of the raw materials, has now created a new photosensitizer and developed a new artificial photosynthesis technology, effectively doubling the yield of fumaric acid production compared to the previous method. The results of this research are expected to reduce carbon dioxide emissions and provide an innovative way to produce biodegradable plastics while reusing waste resources.

Biology: Biochemistry Biology: General Biology: Marine Biology: Microbiology Ecology: Sea Life Environmental: Water Geoscience: Geochemistry Geoscience: Oceanography
Published

Beyond peak season: Bacteria in the Arctic seabed are active all year round      (via sciencedaily.com)     Original source 

Researchers studied the composition and function of bacteria in the seabed off Svalbard, during alternating periods of polar night and midnight sun. To do this, they specially developed a sampling device, the Ellrott grab. In contrast with bacterial communities in the overlying water, the sediment bacteria hardly change with the seasons. This is probably due to the fact that in the seabed some hard-to-digest foods are available all year round.

Chemistry: Biochemistry Energy: Nuclear Physics: General Space: Astrophysics Space: General Space: Structures and Features
Published

New nuclei can help shape our understanding of fundamental science on Earth and in the cosmos      (via sciencedaily.com)     Original source 

In creating five new isotopes, scientists have brought the stars closer to Earth. The isotopes are known as thulium-182, thulium-183, ytterbium-186, ytterbium-187 and lutetium-190.

Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography Paleontology: Fossils Paleontology: General
Published

Searching for clues in the history book of the ocean      (via sciencedaily.com)     Original source 

New research has shown that the tropical subsurface ocean gained oxygen during the Paleocene-Eocene Thermal Maximum (commonly referred to as PETM). During this short-lived interval of time in Earth s history that occurred 56 million years ago the average temperatures rose by up to six degrees within a few thousand years.

Biology: Microbiology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Environmental monitoring offers low-cost tool for typhoid fever surveillance      (via sciencedaily.com)     Original source 

Researchers can accurately track where typhoid fever cases are highest by monitoring environmental samples for viruses called bacteriophages that specifically infect the bacterium that causes typhoid fever.

Chemistry: Biochemistry Chemistry: General Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Trapping sulfate to benefit health, industry and waterways      (via sciencedaily.com)     Original source 

Scientists have developed a new method to measure and remove sulfate from water, potentially leading to cleaner waterways and more effective nuclear waste treatments.

Biology: Biochemistry Biology: Botany Biology: General Ecology: General Ecology: Research Environmental: Ecosystems Environmental: Water
Published

Researchers shed light on river resiliency to flooding      (via sciencedaily.com)     Original source 

Researchers have completed one of the most extensive river resilience studies, examining how river ecosystems recover following floods. They developed a novel modeling approach that used data from oxygen sensors placed in rivers to estimate daily growth in aquatic plants and algae. The researchers then modeled the algal and plant biomass in 143 rivers across the contiguous U.S. to quantify what magnitude of flooding disturbs the biomass and how long the rivers take to recover from floods. Increased understanding of rivers' resiliency is important to maintaining healthy rivers, as human actions can affect flood regimes and change the conditions in rivers for other aquatic life that may rely on algae and plants as a food source.

Chemistry: Biochemistry Chemistry: General
Published

Do AI-driven chemistry labs actually work? New metrics promise answers      (via sciencedaily.com)     Original source 

The fields of chemistry and materials science are seeing a surge of interest in 'self-driving labs,' which make use of artificial intelligence and automated systems to expedite research and discovery. Researchers are now proposing a suite of definitions and performance metrics that will allow researchers, non-experts, and future users to better understand both what these new technologies are doing and how each technology is performing in comparison to other self-driving labs.