Showing 20 articles starting at article 1041
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Environmental: Water
Published The power of pause: Controlled deposition for effective and long-lasting organic devices
(via sciencedaily.com)
Original source 
In organic optoelectronic devices, the control of molecular deposition on thin films is important for optimal surface arrangement and device performance. In a recent study, researchers developed a new method for achieving stable deposition on thin films effectively. They also developed a tool to track real-time potential changes on the surface. These findings are expected to aid the improvement of organic devices, such as organic light-emitting diodes, in terms of efficacy and durability.
Published Innovative graphene-based implantable technology paves the way for high-precision therapeutic applications
(via sciencedaily.com)
Original source 
A new study presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications.
Published Using idle trucks to power the grid with clean energy
(via sciencedaily.com)
Original source 
Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.
Published 3D in vitro human atherosclerosis model for high-throughput drug screening
(via sciencedaily.com)
Original source 
A groundbreaking 3D, three-layer nanomatrix vascular sheet that possesses multiple features of atherosclerosis has been applied for developing a high-throughput functional assay of drug candidates to treat this disease, researchers report.
Published Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production
(via sciencedaily.com)
Original source 
Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.
Published New catalytic technique creates key component of incontinence drug in less time
(via sciencedaily.com)
Original source 
Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.
Published Capturing greenhouse gases with the help of light
(via sciencedaily.com)
Original source 
Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Spying on a shape-shifting protein
(via sciencedaily.com)
Original source 
Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Study uncovers potential origins of life in ancient hot springs
(via sciencedaily.com)
Original source 
A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Light-matter interaction: Broken symmetry drives polaritons
(via sciencedaily.com)
Original source 
An international team of scientists provide an overview of the latest research on light-matter interactions. In a new paper, they provide an overview of the latest research on polaritons, tiny particles that arise when light and material interact in a special way.
Published Beaches and dunes globally squeezed by roads and buildings
(via sciencedaily.com)
Original source 
Beaches and dunes globally squeezed by roads and buildings. Beaches and dunes are becoming increasingly trapped between rising sea levels and infrastructure. Researchers found that today, when dropped on a random beach anywhere in the world, you only need to walk 390 meters (on average) to find the nearest road or building. And while that short walking distance may seem convenient if you want a day at the beach, it's bad news for our protection against rising sea levels, drinking water supplies and biodiversity.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater
(via sciencedaily.com)
Original source 
The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.
Published Generating stable qubits at room temperature
(via sciencedaily.com)
Original source 
Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published Toxic algae blooms: Study assesses potential health hazards to humans
(via sciencedaily.com)
Original source 
Water samples from 20 sites were tested using a panel of immortalized human cell lines corresponding to the liver, kidney and brain to measure cytotoxicity. Results show that each control toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. Known toxins were seen only during blooms. Because cell toxicity was seen in the absence of blooms, it suggests that there might be either emergent toxins or a combination of toxins present at those times. Findings suggest that other toxins with the potential to be harmful to human health may be present in the lagoon.
Published Record heat in 2023 worsened global droughts, floods and wildfires
(via sciencedaily.com)
Original source 
Record heat across the world profoundly impacted the global water cycle in 2023, contributing to severe storms, floods, megadroughts and bushfires, new research shows.
Published Wristband monitors provide detailed account of air pollution exposure
(via sciencedaily.com)
Original source 
Environmental epidemiologists report on a new study of air pollution exposures collected using personal wristband monitors worn by pregnant individuals in New York City matched with data from a questionnaire. Factors predictive of exposures to air pollution include income, time spent outdoors, maternal age, country of birth, transportation type, and season.
Published Is there a common link between the physical and social worlds? Two brothers think so
(via sciencedaily.com)
Original source 
A Rutgers biophysical chemist and his brother, a political scientist on the West Coast, have joined intellectual forces, realizing a long-standing dream of co-authoring an article that bridges their disciplines involving cells and society. In their paper, they have proposed that powerful parallels exist between the microscopic, natural world of cells and molecules and the human-forged realm of organizations and political systems.
Published Researchers step closer to mimicking nature's mastery of chemistry
(via sciencedaily.com)
Original source 
In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.
Published Scientists discover how ultraviolet light degrades coronavirus
(via sciencedaily.com)
Original source 
New research has revealed how light can be used to destroy infectious coronavirus particles that contaminate surfaces. Scientists are interested in how environments, such as surgeries, can be thoroughly disinfected from viruses such as SARS-CoV-2 that caused the COVID-19 pandemic.
Published PFAS flow equally between Arctic Ocean and Atlantic Ocean
(via sciencedaily.com)
Original source 
The frigid Arctic Ocean is far removed from the places most people live, but even so, 'forever chemicals' reach this remote landscape. Now, research suggests that per- and polyfluoroalkyl substances (PFAS) won't stay there indefinitely. Instead, they are transported in a feedback loop, with the Arctic Ocean potentially exporting as many PFAS to the North Atlantic Ocean as it receives, circulating the compounds around the world.