Showing 20 articles starting at article 1561
< Previous 20 articles Next 20 articles >
Categories: Environmental: General, Space: Structures and Features
Published Mind the gap: Caution needed when assessing land emissions in the COP28 Global Stocktake



The land use, land use change, and forestry sector plays a strong role in achieving global climate targets, but a gap exists between how scientists and countries account for its emissions. A new study highlights how mitigation benchmarks change when assessing IPCC scenarios from a national inventory perspective, with net-zero timings arriving up to five years earlier and cumulative emissions to net-zero being 15-18% smaller.
Published NASA's Webb reveals new features in heart of Milky Way



The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.
Published 'Triple star' discovery could revolutionize understanding of stellar evolution



A ground-breaking new discovery could transform the way astronomers understand some of the biggest and most common stars in the Universe. Research by PhD student Jonathan Dodd and Professor René Oudmaijer, from the University's School of Physics and Astronomy, points to intriguing new evidence that massive Be stars -- until now mainly thought to exist in double stars -- could in fact be 'triples'. The remarkable discovery could revolutionise our understanding of the objects -- a subset of B stars -- which are considered an important 'test bed' for developing theories on how stars evolve more generally.
Published Massive Antarctic ozone hole over past four years: What is to blame?



Despite public perception, the Antarctic ozone hole has been remarkably massive and long-lived over the past four years; researchers believe chlorofluorocarbons (CFCs) aren't the only things to blame.
Published Deep-sea mining and warming trigger stress in a midwater jellies



The deep sea is home to one of the largest animal communities on earth which is increasingly exposed to environmental pressures. However, our knowledge of its inhabitants and their response to human-induced stressors is still limited. A new study now provides first insights into the stress response of a pelagic deep-sea jellyfish to ocean warming and sediment plumes caused by deep-sea mining.
Published Effect of aerosol particles on clouds and the climate captured better



Global measurements and model calculations show that the complex relationship between the chemistry and climate impact of aerosol particles can be successfully captured by a simple formula.
Published Outlook on scaling of carbon removal technologies



The research makes it clear that ensuring the sustained well-being of our planet requires a more serious commitment toward new carbon dioxide removal technologies, and a faster scale-up of their production.
Published Forest modeling shows which harvest rotations lead to maximum carbon sequestration



Forest modeling shows that a site's productivity -- an indicator of how fast trees grow and how much biomass they accumulate -- is the main factor that determines which time period between timber harvests allows for maximum above-ground carbon sequestration.
Published Dwarf galaxies use 10-million-year quiet period to churn out stars



If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.
Published Protect delicate polar ecosystems by mapping biodiversity



Concerted action is required to mitigate the impact of warming on polar ecosystems and sustainably manage these unique habitats.
Published Why the vast supergalactic plane is teeming with only one type of galaxy



Our own Milky Way galaxy is part of a much larger formation, the local Supercluster structure, which contains several massive galaxy clusters and thousands of individual galaxies. Due to its pancake-like shape, which measures almost a billion light years across, it is also referred to as the Supergalactic Plane. Why is the vast supergalactic plane teeming with only one type of galaxies? This old cosmic puzzle may now have been solved.
Published New percussion method to detect pipeline elbow erosion



An engineering research team is pioneering a new method, based on percussion, to detect pipeline elbow erosion to prevent economic losses, environmental pollution and other safety issues.
Published Massive 2022 eruption reduced ozone layer levels



The Hunga Tonga-Hunga Ha'apai volcano changed the chemistry and dynamics of the stratosphere in the year following the eruption, leading to unprecedented losses in the ozone layer of up to 7% over large areas of the Southern Hemisphere.
Published Urban environmental exposures drive increased breast cancer incidence



An analysis of breast cancer showed that the state’s urban counties had higher overall incidences of disease than rural counties, especially at early stages upon diagnosis.
Published 'Teenage galaxies' are unusually hot, glowing with unexpected elements



Using the James Webb Space Telescope, CECILIA Survey receives first data from galaxies forming two-to-three billion years after the Big Bang. By examining light from these 33 galaxies, researchers discovered their elemental composition and temperature. The ultra-deep spectrum revealed eight distinct elements: Hydrogen, helium, nitrogen, oxygen, silicon, sulfur, argon and nickel. The teenage galaxies also were extremely hot, reaching temperatures higher than 13,350 degrees Celsius.
Published Coastal river deltas threatened by more than climate change



Worldwide, coastal river deltas are home to more than half a billion people, supporting fisheries, agriculture, cities, and fertile ecosystems. In a unique study covering 49 deltas globally, researchers have identified the most critical risks to deltas in the future. The research shows that deltas face multiple risks, and that population growth and poor environmental governance might pose bigger threats than climate change to the sustainability of Asian and African deltas, in particular.
Published Investigating the contribution of gamma-ray blazar flares to neutrino flux



Gamma-ray flares from blazars can be accompanied by high-energy neutrino emission. To better understand this phenomenon, an international research team has statistically analyzed 145 bright blazars. They constructed weekly binned light curves and utilized a Bayesian algorithm, finding that their sample was dominated by blazars with low flare duty cycles and energy fractions. The study suggests that high-energy neutrinos of blazars might be produced mainly during the flare phase.
Published New research suggests plants might be able to absorb more CO2 from human activities than previously expected



New research paints an uncharacteristically upbeat picture for the planet. This is because more realistic ecological modelling suggests the world's plants may be able to take up more atmospheric CO2 from human activities than previously predicted.
Published Putting an end to plastic separation anxiety



Bio-based plastics often end up in recycling streams because they look and feel like conventional plastic, but the contamination of these compostable products makes it much harder to generate functional material out of recycled plastic. Scientists have now developed a biology-driven process to convert these mixtures into a new biodegradable material that can be used to make fresh products. The scientists believe the process could also enable a new field of biomanufacturing wherein valuable chemicals and even medicines are made from microbes feeding off of plastic waste.
Published Shedding light on unique conduction mechanisms in a new type of perovskite oxide



The remarkable proton and oxide-ion (dual-ion) conductivities of hexagonal perovskite-related oxide Ba7Nb3.8Mo1.2O20.1 are promising for next-generation electrochemical devices. The unique ion-transport mechanisms they unveiled will hopefully pave the way for better dual-ion conductors, which could play an essential role in tomorrow's clean energy technologies.