Showing 20 articles starting at article 1521
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Engineering: Graphene
Published Scientists slow aging by engineering longevity in cells



Researchers have developed a biosynthetic 'clock' that keeps cells from reaching normal levels of deterioration related to aging. They engineered a gene oscillator that switches between the two normal paths of aging, slowing cell degeneration and setting a record for life extension.
Published Pulling the plug on viral infections: CRISPR isn't just about cutting



CRISPR claimed scientific fame for its ability to quickly and accurately edit genes. But, at the core, CRISPR systems are immune systems that help bacteria protect themselves from viruses. A new study reveals a previously unrecognized player in one such system -- a membrane protein that enhances anti-viral defense. According to study authors, the finding upends the idea that CRISPR systems mount their defense only by degrading RNA and DNA in cells.
Published Information 'deleted' from the human genome may be what made us human



What the human genome is lacking compared with the genomes of other primates might have been as crucial to the development of humankind as what has been added during our evolutionary history, according to a new study led by researchers at Yale and the Broad Institute of MIT and Harvard. The new findings, published April 28 in the journal Science, fill an important gap in what is known about historical changes to the human genome.
Published Mammalian evolution provides hints for understanding the origins of human disease



Even though it is important to know where these variations are located in the genome, it's also useful to know how or why these genetic variations happened in the first place.
Published How dormant bacteria come back to life



Bacterial spores can survive for years, even centuries, without nutrients, resisting heat, UV radiation, and antibiotics. How inert, sleeping bacteria -- or spores -- spring back to life has been a century-long mystery. New research identifies how sensor proteins revive dormant bacteria. Discovery opens new routes to combat spore resistance to antibiotics and sterilization. Findings can inform novel strategies to prevent infections, food spoilage.
Published Scientists discover antibiotic resistance genes in clouds



The atmosphere is a large-scale dissemination route for bacteria carrying antibiotic-resistance genes. A research team has shown that these genes can be transported by clouds.
Published Maths unlocks molecular interactions that open window to how life evolved



Landmark research by mathematicians sets out the definitive picture of biological adaptation at the level of intermolecular interactions.
Published Prehistoric scat reveals 'Waves' of extinction in Colombia



Fungal spores found in dung have revealed that large animals went extinct in two 'waves' in the Colombian Andes.
Published A healthy but depleted herd: Predators decrease prey disease levels but also population size



Nature documentaries will tell you that lions, cheetahs, wolves and other top predators target the weakest or slowest animals and that this culling benefits prey herds, whether it's antelope in Africa or elk in Wyoming. This idea has been widely accepted by biologists for many years and was formalized in 2003 as the healthy herds hypothesis. It proposes that predators can help prey populations by picking off the sick and injured and leaving healthy, strong animals to reproduce.
Published Near-universal T cell immunity towards a broad range of bacteria



Typically T cells of the immune system respond to a specific feature (antigen) of a microbe, thereby generating protective immunity. Scientists have discovered an exception to this rule. Namely, a group of divergent bacterial pathogens, including pneumococci, all share a small highly conserved protein sequence, which is both presented and recognized by human T cells in a conserved population-wide manner.
Published Ocean ecosystem: Mixotrophic microorganisms play key role



Researchers have identified a previously unknown group of bacteria, called UBA868, as key players in the energy cycle of the deep ocean. They are significantly involved in the biogeochemical cycle in the marine layer between 200 and 1000 meters.
Published Antimicrobial use in agriculture can breed bacteria resistant to first-line human defenses



A new study has shown that overuse of antimicrobials in livestock production can drive the evolution of bacteria more resistant to the first line of the human immune response. Bacteria that had evolved resistance to colistin, an antimicrobial widely used in farming, also showed resistance to compounds that are key components of human and animal immune systems. The results indicate that farmed pigs and chickens could harbour large reservoirs of cross-resistant bacteria, capable of fuelling future epidemics.
Published Luring the virus into a trap



Viruses like influenza A and Ebola invade human cells in a number of steps. Research teams investigated the final stages of viral penetration using electron tomography and computer simulations. So-called fusion pores, through which the viral genome is released into the host cell, play a central role in these processes. If they can be prevented from forming, the virus is also blocked. The Heidelberg scientists describe previously unknown mechanisms, which might lead to new approaches to prevent infections.
Published Researchers reveal an ancient mechanism for wound repair



The study is the first to identify a damage response pathway that is distinct from but parallel to the classical pathway triggered by pathogens.
Published 'BeerBots' could speed up the brewing process



Craft brewers are continuously upping the ante and coming up with innovative ways to make or flavor their newest beers. Now, researchers are adding a new twist of their own, speeding up the brewing process with beer-making mini-robots or 'BeerBots.' The team shows that these self-propelled, magnetic packages of yeast can make the fermentation phase go faster and cut out the need to filter the beverage.
Published Testing antibiotic resistance with a fast, cheap, and easy method



Researchers have developed a novel and highly efficient method for rapid antibiotic susceptibility testing using optical microscopy. The technique, called Optical Nanomotion Detection, is extremely rapid, single-cell sensitive, label-free, and requires only a basic traditional optical microscope, equipped with a camera or a mobile phone.
Published New biologic effective against major infection in early tests



A research team has shown in early tests that a bioengineered drug candidate can counter infection with Staphylococcus aureus -- a bacterial species widely resistant to antibiotics.
Published Algae in Swedish lakes provide insights to how complex life on Earth developed



By studying green algae in Swedish lakes, a research team has succeeded in identifying which environmental conditions promote multicellularity. The results give us new clues to the amazing paths of evolution.
Published Researchers design battery prototype with fiber-shaped cathode



In a new study, researchers made a cathode, or the positive end of a battery, in the shape of a thread-like fiber. The researchers were then able to use the fiber to create a zinc-ion battery prototype that could power a wrist watch.
Published 360-million-year-old Irish fossil provides oldest evidence of plant self-defense in wood



Scientists have discovered the oldest evidence of plant self-defense in wood in a 360-million-year-old fossil from south-eastern Ireland. Plants can protect their wood from infection and water loss by forming special structures called 'tyloses'. These prevent bacterial and fungal pathogens from getting into the heartwood of living trees and damaging it. However, it was not previously known how early in the evolution of plants woody species became capable of forming such defenses. Published today in Nature Plants is the oldest evidence of tylosis formation from Late Devonian (360-million-year-old) fossil wood from the Hook Head Peninsula area, Co. Wexford, Ireland.