Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Striking gold with molecular mystery solution for potential clean energy      (via sciencedaily.com) 

Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'

Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists unpick how lung cells induce immune response to influenza      (via sciencedaily.com)     Original source 

Researchers have discovered some new and surprising ways that viral RNA and influenza virus are detected by human lung cells, which has potential implications for treating people affected by such viruses.

Biology: Microbiology
Published

Optics and AI find viruses faster      (via sciencedaily.com)     Original source 

Researchers have developed an automated version of the viral plaque assay, the gold-standard method for detecting and quantifying viruses.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Peering into nanofluidic mysteries one photon at a time      (via sciencedaily.com)     Original source 

Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.

Chemistry: General Chemistry: Inorganic Chemistry
Published

A step closer to digitizing the sense of smell: Model describes odors better than human panelists      (via sciencedaily.com) 

A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.

Biology: Microbiology
Published

Acting fast when an epidemic hits      (via sciencedaily.com)     Original source 

Researchers have developed a method for forecasting the short-term progression of an epidemic using extremely limited amounts of data.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Growing triple-decker hybrid crystals for lasers      (via sciencedaily.com) 

By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.

Biology: Biotechnology Biology: Microbiology Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Newly discovered fungus helps destroy a harmful food toxin      (via sciencedaily.com)     Original source 

Patulin is a harmful mycotoxin produced by fungi typically found in damaged fruits, including apples, pears, and grapes. In a recent breakthrough, researchers identified a new filamentous fungal strain that can degrade patulin by transforming it into less toxic substances. Their findings provide important insights into the degradation mechanisms for patulin found in nature, and can lead to new ways of controlling patulin toxicity in our food supplies.

Chemistry: Inorganic Chemistry
Published

Watching a bimetallic catalytic surface in action      (via sciencedaily.com) 

A team of researchers addressed the question: what happens to a Ga-promoted Cu surface under reaction conditions required for the synthesis of methanol? They found complex structural transformations of this bimetallic catalyst that might change the common view on the catalytically active surface structure.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Taking photoclick chemistry to the next level      (via sciencedaily.com) 

Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.

Biology: Botany Biology: Evolutionary Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Nature
Published

Algae provide clues about 600 million years of plant evolution      (via sciencedaily.com)     Original source 

Researchers generated large scale gene expression data to investigate the molecular networks that operate in one of the closest algal relatives of land plants, a humble single-celled alga called Mesotaenium endlicherianum.

Biology: Microbiology
Published

Antibiotics promote the growth of antibiotic-resistant bacteria in the gut      (via sciencedaily.com)     Original source 

Antibiotic-resistant bacteria get extra nutrients and thrive when the drugs kill 'good' bacteria in the gut, according to new research that could lead to better patient risk assessment and 'microbiome therapeutics' treatments to help combat antibiotic-resistant bacteria.

Biology: Microbiology
Published

Could a cancer drug hold the key to an HIV cure?      (via sciencedaily.com)     Original source 

Australian researchers have found an existing blood cancer drug can kill 'silent' HIV cells and delay reinfections -- a significant pre-clinical discovery that could lead to a future cure for the disease.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Robotics Research Mathematics: Modeling
Published

Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition      (via sciencedaily.com) 

Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.

Biology: Biotechnology Biology: Microbiology
Published

Inhalable molecules neutralize SARS-CoV-2 in mice, study finds      (via sciencedaily.com)     Original source 

Nanofitins, which are derived from a protein in an archaeal microorganism found in hot springs -- successfully neutralized SARS-CoV-2 in mice and were well-tolerated. When inhaled by the rodents, the engineered nanofitins, which inhibit the virus by binding to its spike proteins, were observed to quickly reach the lungs in high doses both preventing and clearing early infections, researchers report.

Biology: Microbiology Biology: Molecular
Published

Bacteria treatment reduces insulin resistance, protects against diabetes      (via sciencedaily.com)     Original source 

Researchers have discovered a type of gut bacteria that might help improve insulin resistance, and thus protect against the development of obesity and type-2 diabetes. The study involved genetic and metabolic analysis of human fecal microbiomes and then corroborating experiments in obese mice.

Biology: Biotechnology Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

New 'droplet battery' could pave the way for miniature bio-integrated devices      (via sciencedaily.com) 

Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.

Biology: Biotechnology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Newly engineered versions of bacterial enzyme reveal how antibiotics could be more potent      (via sciencedaily.com)     Original source 

Researchers applied a new technology to generate the full inventory of mutations in the bacterial species Escherichia coli where the antibiotic rifampicin attaches to and disables an essential bacterial enzyme known as RNA polymerase (RNAP).

Biology: Evolutionary Biology: Microbiology
Published

Some hosts have an 'evolutionary addiction' to their microbiome      (via sciencedaily.com)     Original source 

We've long known that hosts malfunction without their microbiome -- whether they are missing key microbial species or are completely microbe free. This malfunctioning is usually explained by the need for microbes to perform unique and beneficial functions, but evolutionary ecologist is questioning that narrative.