Showing 20 articles starting at article 1341
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Chemistry: Inorganic Chemistry
Published A deep-sea fish inspired researchers to develop supramolecular light-driven machinery
(via sciencedaily.com)
Original source 
Chemists have developed a bioinspired supramolecular approach to convert photo-switchable molecules from their stable state into metastable one with low-energy red light. Their work enables fast, highly selective, and efficient switching, providing new tools for energy storage, activation of drugs with light, and sensing applications.
Published Heart repair via neuroimmune crosstalk
(via sciencedaily.com)
Original source 
Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.
Published Rediscovery of rare marine amoeba Rhabdamoeba marina
(via sciencedaily.com)
Original source 
Researchers have rediscovered and successfully cultivating Rhabdamoeba marina -- a rare marine amoeba that has only been reported in two cases in the past century. Using this culture strain, they performed a comprehensive analysis of its genetic sequence, revealing for the first time the phylogenetic position of this enigmatic amoeba, and proposed a novel taxonomic classification based on their research findings.
Published Novel measurement technique for fluid mixing phenomena using selective color imaging method
(via sciencedaily.com)
Original source 
A novel measurement technique has been developed to visualize the fluid flow and distribution within two droplets levitated and coalesced in space using fluorescence-emitting particles. This technique enabled the estimation of fluid motion within each droplet, thereby revealing the internal flow caused by surface vibration when the droplet merging promotes fluid mixing.
Published Study proposes new framework to identify keystone microbial species
(via sciencedaily.com)
Original source 
Microbial communities are thought to contain keystone species, which can disproportionately affect the stability of the communities, even if only present in low abundances. Identifying these keystone species can be challenging, especially in the human gut, since it is not feasible to isolate them through systematic elimination. Researchers have designed a new data-driven keystone species identification (DKI) framework that uses machine learning to resolve this difficulty.
Published Genomic tug of war could boost cancer therapy
(via sciencedaily.com)
Original source 
Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.
Published How cell identity is preserved when cells divide
(via sciencedaily.com)
Original source 
A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation. Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.
Published Much more than waste: Tiny vesicles exchange genetic information between cells in the sea
(via sciencedaily.com)
Original source 
Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.
Published Pushing the boundaries of eco-friendly chemical production
(via sciencedaily.com)
Original source 
A team of pioneering researchers has made a significant leap forward in the complex world of molecular chemistry. Their focus? Azaarenes, unique molecular puzzle pieces crucial to many everyday products, from eco-friendly agrochemicals to essential medicines. The team developed an innovative way to modify these molecules using light-powered enzymes -- a groundbreaking discovery that holds promise for new industrially relevant chemical reactions and sustainable energy solutions.
Published Bear genes show circadian rhythms even during hibernation
(via sciencedaily.com)
Original source 
The internal clocks of grizzly bears appear to keep ticking through hibernation, according to a genetic study. This persistence highlights the strong role of circadian rhythms in the metabolism of many organisms including humans. The genetic study confirmed observational evidence that bears' energy production still waxes and wanes in a daily pattern even as they slumber for several months without eating. The researchers also found that during hibernation the amplitude of the energy production was blunted, meaning the range of highs and lows was reduced. The peak also occurred later in the day under hibernation than during the active season, but the daily fluctuation was still there.
Published Hormones have the potential to treat liver fibrosis
(via sciencedaily.com)
Original source 
Researchers have discovered previously unknown changes in a specific type of liver cells, potentially opening avenues for a new treatment for liver fibrosis, a potentially life-threatening condition. Currently, there are no drugs available to treat liver fibrosis.
Published More than meows: How bacteria help cats communicate
(via sciencedaily.com)
Original source 
Many mammals, from domestic cats and dogs to giant pandas, use scent to communicate with each other. A new study shows how domestic cats send signals to each other using odors derived from families of bacteria living in their anal glands.
Published Plants that survived dinosaur extinction pulled nitrogen from air
(via sciencedaily.com)
Original source 
Ancient cycad lineages that survived the extinction of the dinosaurs may have done so by relying on symbiotic bacteria in their roots to fix atmospheric nitrogen. The finding came from an effort to understand ancient atmospheres, but became an insight into plant evolution instead.
Published How bacteria recognize viral invasion and activate immune defenses
(via sciencedaily.com)
Original source 
Bacteria have an array of strategies to counter viral invasion, but how they first spot a stranger in their midst has long been a mystery.
Published Microbes could help reduce the need for chemical fertilizers
(via sciencedaily.com)
Original source 
A new metal-organic coating protects bacterial cells from damage without impeding their growth or function. The coated bacteria, which produce ammonia, could make it much easier for farmers to deploy microbes as fertilizers.
Published Visualizing 'traffic jams' inside living cells
(via sciencedaily.com)
Original source 
Researchers have unveiled a groundbreaking approach to label-free visualization of intracellular cargo trafficking in living cells, achieving high-speed and limitless observation capabilities. By developing a cargo-localization interferometric scattering (CL-iSCAT) microscope, scientists meticulously tracked the intricate movements of numerous cargos in the bustling cellular world. Surprisingly, cells employ human-like strategies to manage their transport challenges.
Published Engineering bacteria to biosynthesize intricate protein complexes
(via sciencedaily.com)
Original source 
Protein cages found in nature within microbes help weather its contents from the harsh intracellular environment -- an observation with many bioengineering applications. Researchers recently developed an innovative bioengineering approach using genetically modified bacteria; these bacteria can incorporate protein cages around protein crystals. This in-cell biosynthesis method efficiently produces highly customized protein complexes, which could find applications as advanced solid catalysts and functionalized nanomaterials.
Published Water splitting reaction for green hydrogen gas production improved
(via sciencedaily.com)
Original source 
Electrochemical catalysts used in water splitting often show poor performance due to low electrical conductance of (oxy)hydroxide species produced in situ. To overcome this challenge, researchers have now designed an electrode with Schottky Junction formed at the interface of metallic Ni-W5N4 and semiconducting NiFeOOH. The proposed electrode shows excellent catalytic activity and can facilitate industrial seawater splitting continuously for 10 days.
Published Riddle of Kondo effect solved in ultimately thin wires
(via sciencedaily.com)
Original source 
A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published Surveilling wetlands for infectious bird flu -- and finding it
(via sciencedaily.com)
Original source 
Recently, morning omelets and holiday dinners have gotten more expensive. One likely cause is bird flu, outbreaks of which led to the deaths of millions of chickens and turkeys from infection or culling in 2022, according to the U.S. Department of Agriculture, and which still demands rigorous monitoring of wild populations. Now, researchers have developed a method that detected infectious bird flu virus in wetlands frequented by waterfowl.