Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Chemistry: Inorganic Chemistry
Published Catalytic combo converts CO2 to solid carbon nanofibers
(via sciencedaily.com)
Original source 
Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.
Published Protein complex discovered to control DNA repair
(via sciencedaily.com)
Original source 
The repair of damage to genetic material (DNA) in the human body is carried out by highly efficient mechanisms that have not yet been fully researched. A scientific team has now discovered a previously unrecognized control point for these processes. This could lead to a new approach for the development of cancer therapies aimed at inhibiting the repair of damaged cancer cells.
Published Artificial muscle device produces force 34 times its weight
(via sciencedaily.com)
Original source 
Scientists developed a soft fluidic switch using an ionic polymer artificial muscle that runs with ultra-low power to lift objects 34 times greater than its weight. Its light weight and small size make it applicable to various industrial fields such as soft electronics, smart textiles, and biomedical devices by controlling fluid flow with high precision, even in narrow spaces.
Published Potential solvents identified for building on moon and Mars
(via sciencedaily.com)
Original source 
Researchers have taken the first steps toward finding liquid solvents that may someday help extract critical building materials from lunar and Martian-rock dust, an important piece in making long-term space travel possible. Using machine learning and computational modeling, researchers have found about half a dozen good candidates for solvents that can extract materials on the moon and Mars usable in 3D printing. The powerful solvents, called ionic liquids, are salts that are in a liquid state.
Published Generating stable qubits at room temperature
(via sciencedaily.com)
Original source 
Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published Researchers discover potential microbiome links to skin aging
(via sciencedaily.com)
Original source 
Recent findings have identified a potential new link to signs of skin aging -- the skin microbiome, the collection of microorganisms that inhabits our skin.
Published Experiments in infant mice suggest new way to prevent spread of flu in people
(via sciencedaily.com)
Original source 
Scientists have long known that some viruses and bacteria begin infections by latching first onto sugar molecules on the surfaces of cells lining the sinuses and throat of mammals, including humans. Viral particles, for instance, can attach to these molecules, called sialic acids, or SAs, like keys fitting into locks.
Published First direct imaging of small noble gas clusters at room temperature
(via sciencedaily.com)
Original source 
Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published Making an important industrial synthesis more environmentally friendly
(via sciencedaily.com)
Original source 
Researchers have resolved a problem that has limited the environmental sustainability of peracid synthesis. By judicious choice of the solvent and light input, approximately room-temperature autoxidation of aldehydes proceeds in a manner that results in industrially useful peracids or carboxylic acids. This work is an important advance in green chemistry that will help minimize the carbon footprint of the chemical industry.
Published Researchers step closer to mimicking nature's mastery of chemistry
(via sciencedaily.com)
Original source 
In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.
Published A new type of plant metalloreductase maintains root growth under low phosphorus
(via sciencedaily.com)
Original source 
Phosphorus is essential for undisturbed plant growth and development. However, in many soils, phosphorus is only poorly available. One mechanism used by plants to increase phosphorus availability is the release of malate, an organic acid, which can form complexes with iron or aluminium in the soil, thereby liberating sorbed phosphate. However, this response can also result in iron overaccumulation, which can inhibit root growth.
Published Dry-cleaning fluid becomes a synthetic chemist's treasure
(via sciencedaily.com)
Original source 
The widely used dry-cleaning and degreasing solvent perc can be converted to useful chemicals by a new clean, safe and inexpensive procedure. The discovery using on-demand UV activation may open the path to upcycling perc and thus contribute to a more sustainable society.
Published Iron influences plant immunity and may promote resiliency against climate change
(via sciencedaily.com)
Original source 
Researchers discovered that plants manage iron deficiency without helping 'bad' bacteria thrive by eliminating the molecular signal for iron deficiency, and that the iron deficiency signaling pathway and the plant immune system are deeply intertwined. Their findings provide a new target for boosting plant resilience in the face of climate change, and offer new insight into plant and animal microbiomes.
Published The reaction mechanism for catalytic ammonia production experimentally determined
(via sciencedaily.com)
Original source 
Researchers have now been able to study the surface of iron and ruthenium catalysts when ammonia is formed from nitrogen and hydrogen. A better knowledge of the catalytic process and the possibility of finding even more efficient materials opens the door for a green transition in the currently very CO2-intensive chemical industry.
Published Epic of a molecular ion: With eyes of electrons
(via sciencedaily.com)
Original source 
Researchers have achieved real-time capture of the ionization process and subsequent structural changes in gas-phase molecules through an enhanced mega-electronvolt ultrafast electron diffraction (MeV-UED) technique, enabling observation of faster and finer movements of ions.
Published Largest diversity study of 'magic mushrooms' investigates the evolution of psychoactive psilocybin production
(via sciencedaily.com)
Original source 
The genomic analysis of 52 Psilocybe specimens includes 39 species that have never been sequenced. Psilocybe arose much earlier than previously thought -- about 65 million years ago -- and the authors found that psilocybin was first synthesized in mushrooms in the genus Psilocybe. Their analysis revealed two distinct gene orders within the gene cluster that produces psilocybin. The two gene patterns correspond to an ancient split in the genus, suggesting two independent acquisitions of psilocybin in its evolutionary history. The study is the first to reveal such a strong evolutionary pattern within the gene sequences underpinning the psychoactive proteins synthesis.
Published How black silicon, a prized material used in solar cells, gets its dark, rough edge
(via sciencedaily.com)
Original source 
Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.
Published With only the pawprints, researchers study elusive bobcat
(via sciencedaily.com)
Original source 
With DNA recovered from animal tracks, scientists revealed information about the ancestry and microbial community of bobcats without having to sample the animal directly.
Published The first domino falls for redox reactions
(via sciencedaily.com)
Original source 
Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.
Published Researchers demonstrate that quantum entanglement and topology are inextricably linked
(via sciencedaily.com)
Original source 
Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.