Showing 20 articles starting at article 1341
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Geoscience: Earthquakes
Published Nutrients drive cellular reprogramming in the intestine



Researchers have unveiled an intriguing phenomenon of cellular reprogramming in mature adult organs, shedding light on a novel mechanism of adaptive growth. The study, which was conducted on fruit flies (Drosophila), provides further insights into dedifferentiation -- where specialized cells that have specific functions transform into less specialized, undifferentiated cells like stem cells.
Published These worms have rhythm



Researchers have developed a new imaging technique to observe active gene expression in real time. They found that four molecules work together to control the timing of each stage of the C. elegans worm's development. This timekeeping process could provide important clues about the natural rhythm of development in humans and other animals.
Published Bacteria generate electricity from wastewater


In a breakthrough for the field of bioelectronics, researchers have enhanced the ability of E. coli bacteria to generate electricity. The innovative approach only offers a sustainable solution for organic waste processing while outperforming previous state-of-the-art technologies, opening new horizons for versatile microbial electricity production.
Published New at-home test for gingivitis protects oral health



Engineers have developed a new device that can warn consumers about early risks of tooth decay from diseases such as gingivitis and periodontitis.
Published Scientists unlock secrets of red blood cell transporter, potentially paving the way for new drugs



Researchers have identified the structure of a special transporter found in red blood cells and how it interacts with drugs. Details on the findings could lead to the development of more targeted medicines. The research team found that this transporter facilitates the movement of a substance called bicarbonate, which certain drugs can inhibit. They discovered how these drugs block the transporter and devised novel compounds capable of achieving the same effect.
Published Study ties fracking to another type of shaking



New research confirms fracking causes slow, small earthquakes or tremors, whose origin was previously a mystery to scientists. The tremors are produced by the same processes that could create large, damaging earthquakes.
Published Fiber optic cables detect and characterize earthquakes



The same fiber optic networks that provide internet can simultaneously act as earthquake sensors, as demonstrated in a new study.
Published California's winter waves may be increasing under climate change



A new study uses nearly a century of data to show that the average heights of winter waves along the California coast have increased as climate change has heated up the planet.
Published How to distinguish slow and fast earthquakes



Slow earthquakes are slow-slip phenomena that last many days or months, and you barely notice them. In 2007, researchers proposed how the magnitude and duration of earthquakes vary, which can help differentiate slow and fast earthquakes. Seismologists now bolster the proposed relation with more data. They suggest the presence of a speed limit to slow earthquakes and reveal physical processes that differentiate slow and fast earthquakes. Since slow earthquakes could indicate future fast earthquakes, monitoring and understanding them helps accurately forecast devastating earthquakes and tsunamis.
Published What can central Utah's earthquake 'swarms' reveal about the West's seismicity?



Much of central Utah's seismic activity comes in groups of small earthquakes. A study by seismologists examines 2,300 quakes occurring 40 'swarms' dating back to 1981, opening a window into Earth's crust in a geothermally active area.
Published Earth's Inner Core: Earth's solid metal sphere is 'textured'



Scientists used seismic data discovered Earth's inner core displays a variety of textures that it acquired will it formed from within the fluid outer core. The data set was generated over the past 27 years by a network of seismometers set up to enforce the nuclear test ban treaty.
Published Water storage capacity in oceanic crust slabs increases with age, researchers find



An international research team has discovered that a subduction zone's age affects the ability for it to recycle water between the Earth's surface and its inner layers. The more mature the subduction zone, the bigger the water storage capacity.
Published Research reveals sources of CO2 from Aleutian-Alaska Arc volcanoes



Scientists have wondered what happens to the organic and inorganic carbon that Earth's Pacific Plate carries with it as it slides into the planet's interior along the volcano-studded Ring of Fire. A new study suggests a notable amount of such subducted carbon returns to the atmosphere rather than traveling deep into Earth's mantle.
Published Geologists are using artificial intelligence to predict landslides



Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.
Published Researchers unearth the mysteries of how Turkey's East Anatolian fault formed



An international team has, for the first time, accurately determined the age of the East Anatolian fault, allowing geologists to learn more about its seismic history and tendency to produce earthquakes.
Published What are the characteristics of foreshocks for large earthquakes?



Seismologists agree that foreshocks are the most widely identified signal of an upcoming mainshock earthquake. But do these foreshock sequences have distinctive characteristics that separate them from aftershock sequences, and could these characteristics be used to help forecast mainshocks?
Published Genetic secrets of America's favorite snack



In its simplest form, popcorn is pretty uncomplicated. Most supermarket varieties offer the choice of two kernel colors, yellow or white, and two kernel shapes, pointed or pearl. When popped, the flake typically expands into one of two shapes: mushroom or butterfly. But there's more to popcorn than meets the eye. New research reveals a wealth of untapped diversity lurking in popcorn's genetic code.
Published Researchers develop digital test to directly measure HIV viral load



A milliliter of blood contains about 15 individual drops. For a person with human immunodeficiency virus (HIV), each drop of blood could contain anywhere from fewer than 20 copies of the virus to more than 500,000 copies. Called the viral load, this is what is measured to allow clinicians to understand how patients are responding to anti-viral medications and monitor potential progression. The time-consuming viral load testing needs to be repeated several times as a patient undergoes treatment. Now, a research team has developed a time and cost-efficient digital assay that can directly measure the presence of HIV in single drop of blood.
Published Multiscale rupture growth driven by a complex fault network during the 2023 Türkiye and Syria earthquake doublet



Researchers analyzed the source processes of the twin earthquakes that caused extensive damage in Türkiye and Syria on February 6, 2023. The results revealed that a complex fault network with bends, steps, and branches controlled the propagation speed and direction of the rupture, leading to hierarchical small to large rupture growth.
Published How coral reefs can survive climate change



Similar to the expeditions of a hundred or two hundred years ago, the Tara Pacific expedition lasted over two years. The goal: to research the conditions for life and survival of corals. The ship crossed the entire Pacific Ocean, assembling the largest genetic inventory conducted in any marine system to date. The team's 70 scientists from eight countries took around 58,000 samples from the hundred coral reefs studied.