Showing 20 articles starting at article 1661

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Ecology: Invasive Species

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

How plants use sugar to produce roots      (via sciencedaily.com)     Original source 

Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. Botanists have demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to the research team leader.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

Puppeteer fungus' targeted takeover of 'zombie' flies      (via sciencedaily.com)     Original source 

Researchers reveal the molecular and cellular underpinnings behind the parasitic fungus, Entomophthora muscae's (E. muscae), ability to manipulate the behavior of fruit flies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Synthetic biology: proteins set vesicles in motion      (via sciencedaily.com)     Original source 

Biophysicists have designed a new cell-like transport system that represents an important milestone on the road to artificial cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Cancer cells use a new fuel in absence of sugar      (via sciencedaily.com)     Original source 

Researchers have discovered a new nutrient source that pancreatic cancer cells use to grow. The molecule, uridine, offers insight into both biochemical processes and possible therapeutic pathways. The findings show that cancer cells can adapt when they don't have access to glucose.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Watch these cells rapidly create protrusions for exploration and movement      (via sciencedaily.com)     Original source 

In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Scales or feathers? It all comes down to a few genes      (via sciencedaily.com)     Original source 

Scales, spines, feathers and hair are examples of vertebrate skin appendages, which constitute a remarkably diverse group of micro-organs. Despite their natural multitude of forms, these appendages share early developmental processes at the embryonic stage. Researchers have discovered how to permanently transform the scales that normally cover the feet of chickens into feathers, by specifically modifying the expression of certain genes.

Biology: Botany Ecology: Animals Ecology: Invasive Species Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Is it an ant? Is it a plant? No, it's a spider!      (via sciencedaily.com)     Original source 

A species of tiny, colorful jumping spider employs two lines of defense to avoid being eaten: camouflaging with plants and walking like an ant. Researchers report that this combination of camouflage and movement mimicry helps the spiders evade spider-eating spiders but does not deter hungry praying mantises.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Sea Life
Published

What did the earliest animals look like?      (via sciencedaily.com)     Original source 

Surprisingly, genome comparisons have failed to resolve a major question in animal evolution: Which living animals are the descendants of the earliest animals to evolve in the world's oceans? Scientists performed a detailed chromosomal analysis that comes down definitively in favor of comb jellies, or ctenophores, as the most recent common ancestor of all animals, or the sister taxa to all animals. Sponges evolved later.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

A channel involved in pain sensation can also suppress it      (via sciencedaily.com)     Original source 

Pain is good. It's the body's way to keep an animal from harming itself or repeating a dangerous mistake. But sometimes the debilitating sensation can get in the way. So evolution has devised ways to tamp that response down under certain circumstances.

Biology: Biochemistry Biology: Cell Biology Biology: General
Published

Researchers pinpoint brain cells that drive appetite in obesity      (via sciencedaily.com)     Original source 

A group of brain cells discovered by researchers reveals a potential new approach to anti-obesity treatment.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology
Published

An edible CBD coating could extend the shelf life of strawberries      (via sciencedaily.com)     Original source 

Soon, you'll be able to get a box of freshly picked, sweet strawberries from the grocery store or local farm stand. But it's disappointing when you get them home and find that the ones at the bottom have started to rot. To increase the berries' shelf life, researchers have incorporated cannabidiol -- a non-hallucinogenic compound from cannabis known as CBD -- and sodium alginate into an edible antimicrobial coating.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers reveal DNA repair mechanism      (via sciencedaily.com)     Original source 

A new study adds to an emerging, radically new picture of how bacterial cells continually repair faulty sections of their DNA.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Endangered Species Ecology: Invasive Species Offbeat: General Offbeat: Plants and Animals
Published

Rare tropical plant gains appetite for meat      (via sciencedaily.com)     Original source 

Under certain circumstances, a rare tropical plant develops into a carnivore. A research team has now deciphered the mechanism responsible for this.

Biology: General Ecology: Invasive Species
Published

Joro spiders aren't scary: They're shy      (via sciencedaily.com)     Original source 

Despite their intimidating appearance, the giant yellow and blue-black spiders spreading across the Southeastern U.S. owe their survival to a surprising trait: They're rather timid. The Joro spider may be the shyest spider ever documented.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

How superbug A. baumannii survives metal stress and resists antibiotics      (via sciencedaily.com)     Original source 

The deadly hospital pathogen Acinetobacter baumannii can live for a year on a hospital wall without food and water. Then, when it infects a vulnerable patient, it resists antibiotics as well as the body's built-in infection-fighting response. The World Health Organization (WHO) recognizes it as one of the three top pathogens in critical need of new antibiotic therapies. Now, an international team, led by Macquarie University researchers Dr. Ram Maharjan and Associate Professor Amy Cain, have discovered how the superbug can survive harsh environments and then rebound, causing deadly infections. They have found a single protein that acts as a master regulator. When the protein is damaged, the bug loses its superpowers allowing it to be controlled, in a lab setting. The research is published this month in Nucleic Acids Research.

Biology: Biochemistry Biology: Cell Biology Biology: General Offbeat: General Offbeat: Plants and Animals
Published

Researchers discover brain circuit underlying spontaneous synchronized movement of individuals in groups      (via sciencedaily.com)     Original source 

Individual fish in schools scatter in unison when a predator is in their midst. Such precisely coordinated group movements and immobility during threats have long been observed in insects and mammals. Now, a brain pathway has been discovered that enables individual animals to rapidly coordinate a unified response, with no rehearsal required.

Biology: Botany Biology: Zoology Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

We now know exactly what happens in nature when we fell forests      (via sciencedaily.com)     Original source 

Deforestation is the biggest threat to the planet's ecosystems, and new research has now mapped out exactly what happens when agriculture replaces forestry.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Phage structure captured, to benefit biotech applications      (via sciencedaily.com)     Original source 

Researchers have mapped out what a commonly-used form of phage looks like, which will help design better uses in future.

Biology: Cell Biology Biology: Microbiology Geoscience: Geochemistry
Published

Heat-loving marine bacteria can help detoxify asbestos      (via sciencedaily.com)     Original source 

Researchers have shown that extremophilic bacteria from high temperature marine environments can be used to reduce asbestos' toxicity.