Showing 20 articles starting at article 2201

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Physics: General

Return to the site home page

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator      (via sciencedaily.com) 

Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

New possibilities in the theoretical prediction of particle interactions      (via sciencedaily.com) 

A team of scientists finds a way to evaluate highly complex Feynman integrals.

Biology: Biotechnology Biology: Cell Biology Biology: General Environmental: Water
Published

Scientists use tardigrade proteins for human health breakthrough      (via sciencedaily.com)     Original source 

Natural and engineered versions of tardigrade proteins can be used to stabilize an important pharmaceutical used to treat people with hemophilia and other conditions without the need for refrigeration -- even amid high temperatures and other difficult conditions.

Offbeat: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Ultrafast beam-steering breakthrough      (via sciencedaily.com) 

n a major breakthrough in the fields of nanophotonics and ultrafast optics, a research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.

Biology: Cell Biology Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Environmental: Ecosystems Environmental: Water
Published

Jellyfish size might influence their nutritional value      (via sciencedaily.com) 

Researchers confirmed what was already known: jellyfish eat bigger prey as they grow, which means they also occupy a higher position in the food web as they grow. They also found that some of the concentrations of 'healthy fats,' increase as jellyfish grow. These changes might be influenced by their diet, and as they feed on bigger prey with higher levels of fatty acids, the jellyfish accumulate more of these fatty acids.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

First detection of neutrinos made at a particle collider      (via sciencedaily.com) 

A team including physicists has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN's Large Hadron Collider (LHC). The discovery promises to deepen scientists' understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.

Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Muscle health depends on lipid synthesis      (via sciencedaily.com)     Original source 

Muscle degeneration, the most prevalent cause of frailty in hereditary diseases and aging, could be caused by a deficiency in one key enzyme in a lipid biosynthesis pathway. Researchers now characterize how the enzyme PCYT2 affects muscle health in disease and aging in laboratory mouse models.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists open door to manipulating 'quantum light'      (via sciencedaily.com) 

How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Instrument adapted from astronomy observation helps capture singular quantum interference effects      (via sciencedaily.com) 

By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sculpting quantum materials for the electronics of the future      (via sciencedaily.com) 

The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Biology: Cell Biology Biology: Marine Biology: Zoology Environmental: Ecosystems Environmental: Water
Published

Noise harming ocean invertebrates and ecosystems      (via sciencedaily.com) 

Noise from human activities is harming ocean invertebrates and ecosystems, new research shows.

Biology: Botany Biology: Cell Biology Ecology: Nature
Published

An elegant new orchid hiding in plain sight      (via sciencedaily.com) 

It is extremely rare for a new plant species to be discovered in Japan, a nation where flora has been extensively studied and documented. Nevertheless, botanists recently uncovered a stunning new species of orchid whose rosy pink petals bear a striking resemblance to glasswork. Interestingly, it can be found in familiar environments such as lawns and parks, and even in private gardens and on balconies. This research suggests that other new species may be hiding in common places.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of an unexpected function of blood immune cells: Their ability to proliferate      (via sciencedaily.com) 

The ability of a cell to divide, to proliferate, is essential for life and gives rise to the formation of complex organisms from a single cell. It also allows the replacement of used cells from a limited number of 'stem' cells, which then proliferate and specialize. In cancer, however, cell proliferation is no longer controlled and becomes chaotic. Researchers have discovered that, in a healthy individual, certain blood immune cells, the monocytes, also have this ability to proliferate, with the aim to replace tissue macrophages, which are essential for the proper functioning of our body.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Geoscience: Environmental Issues
Published

Discovery of root anatomy gene may lead to breeding more resilient corn crops      (via sciencedaily.com) 

A new discovery, reported in a global study that encompassed more than a decade of research, could lead to the breeding of corn crops that can withstand drought and low-nitrogen soil conditions and ultimately ease global food insecurity.

Biology: Biotechnology Biology: Cell Biology Biology: Microbiology Environmental: Ecosystems Geoscience: Earth Science
Published

Study shines new light on ancient microbial dark matter      (via sciencedaily.com) 

An international research team produced the first large-scale analysis of more than 400 newly sequenced and existing Omnitrophota genomes, uncovering new details about their biology and behavior.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

An extra X chromosome-linked gene may explain decreased viral infection severity in females      (via sciencedaily.com) 

It has long been known that viral infections can be more severe in males than females, but the question as to why has remained a mystery -- until possibly now. Researchers have found that female mouse and human Natural Killer cells have an extra copy of an X chromosome-linked gene called UTX. UTX acts as an epigenetic regulator to boost NK cell anti-viral function, while repressing NK cell numbers.