Showing 20 articles starting at article 2101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Physics: General

Return to the site home page

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Backscattering protection in integrated photonics is impossible with existing technologies      (via sciencedaily.com)     Original source 

Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: Inorganic Chemistry Ecology: Sea Life Engineering: Nanotechnology Physics: Optics
Published

Pollution monitoring through precise detection of gold nanoparticles in woodlice      (via sciencedaily.com)     Original source 

Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.

Physics: General Physics: Quantum Physics
Published

Better understanding the physics of our universe      (via sciencedaily.com)     Original source 

Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

Stow­aways in the genome      (via sciencedaily.com)     Original source 

Scientists have discovered over 30,000 viruses by using the high-performance computer cluster 'Leo' and sophisticated detective work. The viruses hide in the DNA of unicellular organisms. In some cases, up to 10% of microbial DNA consists of built-in viruses.

Biology: Cell Biology Biology: Developmental Biology: General Ecology: Sea Life
Published

Jellyfish and fruit flies shed light on the origin of hunger regulation      (via sciencedaily.com)     Original source 

To survive, all organisms must regulate their appetite. Hormones and small proteins called neuropeptides perform this process, stimulating feelings of hunger and fullness. When researchers noted the similarities between GAWamide, a neuropeptide that regulates feeding in the Cladonema jellyfish, and myoinhibitory peptide, a neuropeptide that regulates feeding in fruit flies, they decided to test whether they could exchange the two. Their success in doing so highlights the deep evolutionary origins of feeding regulation.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Your baby's gut is crawling with unknown viruses      (via sciencedaily.com)     Original source 

Babies tumble about with more than 200 previously unknown viral families within their intestines. This large number comes as a surprise to researchers, who closely studied the diapers of 647 Danish babies and made this mapping. These viruses most likely play an important role in protecting children from chronic diseases.

Physics: General
Published

Merons and antimerons      (via sciencedaily.com)     Original source 

Sliding and twisting of van der Waals layers can produce fascinating physical phenomena. Scientists show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Rooting out how plants control nitrogen use      (via sciencedaily.com)     Original source 

Nitrogen is such a crucial nutrient for plants that vast quantities of nitrogen-containing fertilizers are spread on farmlands worldwide. However, excess nitrogen in the soil and in drainage run-off into lakes and rivers causes serious ecological imbalances. A recent study has uncovered the regulatory mechanisms at work when plants utilize nitrogenous fertilizers in their roots, a positive step in the quest to generate crops that require less fertilizer while still producing the yields needed to feed the world.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

How to see the invisible: Using the dark matter distribution to test our cosmological model      (via sciencedaily.com)     Original source 

Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Here's how a worm's embryonic cells changed its development potential      (via sciencedaily.com)     Original source 

Researchers have spotted how specific proteins within the chromosomes of roundworms enable their offspring to produce specialized cells generations later, a startling finding that upends classical thinking that hereditary information for cell differentiation is mostly ingrained within DNA and other genetic factors.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Environmental: Ecosystems Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Woolly mammoths evolved smaller ears and woolier coats over the 700,000 years that they roamed the Siberian steppes      (via sciencedaily.com)     Original source 

A team of researchers compared the genomes of woolly mammoths with modern day elephants to find out what made woolly mammoths unique, both as individuals and as a species. The investigators report that many of the woolly mammoth's trademark features -- including their woolly coats and large fat deposits -- were already genetically encoded in the earliest woolly mammoths, but these and other traits became more defined over the species' 700,000+ year existence. They also identified a gene with several mutations that may have been responsible for the woolly mammoth's miniscule ears.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Simple but revolutionary modular organoids      (via sciencedaily.com)     Original source 

A team has developed an ingenious device, using layers of hydrogels in a cube-like structure, that allows researchers to construct complex 3D organoids without using elaborate techniques. The group also recently demonstrated the ability to use the device to build organoids that faithfully reproduce the asymmetric genetic expression that characterizes the actual development of organisms.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers clear the way for well-rounded view of cellular defects      (via sciencedaily.com)     Original source 

New research investigates how cells divide, particularly in the fibrous environment of living tissue. Cells are typically studied in a flat environment, and the difference between flat and fibrous landscapes opens new windows into the behavior of cells and the diseases that impact them.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Mathematics: Modeling Physics: General
Published

New atomic-scale understanding of catalysis could unlock massive energy savings      (via sciencedaily.com)     Original source 

In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Broccoli consumption protects gut lining, reduces disease, in mice      (via sciencedaily.com)     Original source 

Broccoli is known to be beneficial to our health. For example, research has shown that increased consumption of the cruciferous vegetable decreases incidence of cancer and type 2 diabetes. In a recent study, researchers found that broccoli contains certain molecules that bind to a receptor within mice and help to protect the lining of the small intestine, thereby inhibiting the development of disease. The findings lend support to the idea that broccoli truly is a 'superfood.'

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Blind dating in bacteria evolution      (via sciencedaily.com)     Original source 

A team of researchers reconstructed long-extinct proteins of a UV protection system of cyanobacteria. The surprising result: the proteins were already compatible with each other when they first met. This discovery expands the knowledge horizon on the rules of evolution.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Two-dimensional nanoparticles with great potential      (via sciencedaily.com)     Original source 

A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.