Showing 20 articles starting at article 2061

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Physics: General

Return to the site home page

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Long-distance quantum teleportation enabled by multiplexed quantum memories      (via sciencedaily.com)     Original source 

Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species
Published

Fluorescent blue coumarins in a folk-medicine plant could help us see inside cells      (via sciencedaily.com)     Original source 

Plants that glow under ultraviolet (UV) light aren't only a figment of science fiction TV and movies. Roots of a traditional medicine plant called the orange climber, or Toddalia asiatica, can fluoresce an ethereal blue hue. And now, researchers have identified two coumarin molecules that could be responsible. These natural coumarins have unique fluorescent properties, and one of the compounds could someday be used for medical imaging.

Computer Science: General Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A team creates 'quantum composites' for various electrical and optical innovations      (via sciencedaily.com)     Original source 

A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists find unusual waves in nickel-based magnet      (via sciencedaily.com)     Original source 

Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics
Published

Chemists propose ultrathin material for doubling solar cell efficiency      (via sciencedaily.com)     Original source 

Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Geoscience: Geochemistry
Published

SpyLigation uses light to switch on proteins      (via sciencedaily.com)     Original source 

Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works. The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle.

Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum liquid becomes solid when heated      (via sciencedaily.com)     Original source 

Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.

Offbeat: General Physics: General Physics: Quantum Physics
Published

Teasing strange matter from the ordinary      (via sciencedaily.com)     Original source 

In a unique analysis of experimental data, nuclear physicists have made observations of how lambda particles, so-called 'strange matter,' are produced by a specific process called semi-inclusive deep inelastic scattering (SIDIS). What's more, these data hint that the building blocks of protons, quarks and gluons, are capable of marching through the atomic nucleus in pairs called diquarks, at least part of the time.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists discover transformable nano-scale electronic devices      (via sciencedaily.com)     Original source 

The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Zoology
Published

The surprising science behind long-distance bird migration      (via sciencedaily.com)     Original source 

Scientists have recently made a surprising discovery, with the help of a wind tunnel and a flock of birds. Songbirds, many of which make twice-yearly, non-stop flights of more than 1,000 miles to get from breeding range to wintering range, fuel themselves by burning lots of fat and a surprising amount of the protein making up lean body mass, including muscle, early in the flight. This flips the conventional wisdom on its head, which had assumed that migrating birds only ramped up protein consumption at the very end of their journeys, because they would need to use every ounce of muscle for wing-flapping, not fuel.

Biology: Cell Biology Biology: General Biology: Microbiology
Published

Researchers uncover new differences in bacteria's sugar coat to aid pneumococcal vaccine development      (via sciencedaily.com)     Original source 

Many disease-causing bacteria like Streptococcus pneumoniae (S. pneumoniae) are encased in a sugar layer called the capsular polysaccharide (CPS). This layer is often essential for infections. In a ground-breaking discovery, features of the CPS that help the bacteria to colonize the human respiratory tract were identified. The research showed that the structures of the CPS capsule and its types of linkages and combinations matter greatly in allowing the bacteria to better attach and survive on the lining of the upper and lower human respiratory tracts.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

New genetic target for male contraception identified      (via sciencedaily.com)     Original source 

Discovery of a gene in multiple mammalian species could pave the way for a highly effective, reversible and non-hormonal male contraceptive for humans and animals. Researchers identified expression of the gene, Arrdc5, in the testicular tissue of mice, pigs, cattle and humans. When they knocked out the gene in mice, it created infertility only in the males, impacting their sperm count, movement and shape.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Molecular 'Superpower' of antibiotic-resistant bacteria      (via sciencedaily.com)     Original source 

A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly in healthcare settings. A study now shows how two molecular mechanisms can work together make the bacterium extra resistant.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Different cell types in the brain are affected by tick infection      (via sciencedaily.com)     Original source 

The dreaded tick-borne encephalitis (TBE) virus infects different types of brain cells in different parts of the brain, depending on whether the affected person's immune system is activated or not.

Biology: Cell Biology Biology: Microbiology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New discovery stops bacterial virus contamination      (via sciencedaily.com)     Original source 

A new discovery could help stop bacteria being contaminated with viruses, reducing disruption and decreasing costs in industry and research.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Molecular Biology: Zoology
Published

Tracking a new path to octopus and squid sensing capabilities      (via sciencedaily.com)     Original source 

Research has traced the evolutionary adaptations of octopus and squid sensing capabilities. The researchers describe for the first time the structure of an octopus chemotactile receptor, which octopus arms use for taste-by-touch exploration of the seafloor.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How a virus causes chromosomal breakage, leading to cancer      (via sciencedaily.com)     Original source 

Researchers describe how the Epstein-Barr virus exploits genomic weaknesses to cause cancer while reducing the body's ability to suppress it.