Showing 20 articles starting at article 1721
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Physics: General
Published Majority rule in complex mixtures


The very first life on earth is thought to have developed from 'protocells' -- liquid mixtures of many different types of molecules. Researchers have now shown that in such mixtures, small imbalances in the number of molecules of different types can have an unexpected effect. A surprising interplay with the complex pattern of interactions strongly amplifies such imbalances -- meaning that a type of molecule that is only slightly in the majority can almost entirely separate out from the others. These fundamental findings point towards a new mechanism that will apply in many complex mixtures. For instance, this would be a way for cells to control the formation of structures by fine-tuning the concentration of different molecules.
Published 'Dormant' HIV produces RNA and proteins during anti-retroviral therapy



HIV anti-retroviral therapy is considered a treatment and not a cure because patients usually carry a reservoir of HIV-infected cells that can re-emerge if treatment stops. These reservoirs have long been thought to be dormant, but two independent groups of researchers report that a subset of these cells spontaneously produce HIV RNA and proteins that may impact patients' HIV-specific immune responses.
Published Chemist uses nature as inspiration for a sustainable, affordable adhesive system


A chemist drew inspiration from the natural world, from his experiences scuba diving to studying shellfish in his lab. He has developed a sustainable adhesive system -- an alternative to toxic, permanent, traditional adhesives.
Published Freshwater connectivity can transport environmental DNA through the landscape


A new article uses environmental DNA (eDNA) metabarcoding to analyze fish and zooplankton communities. The study found that the movement of water between freshwater bodies, or freshwater connectivity, can transport eDNA. This highlights the potential of eDNA to provide a comprehensive view of freshwater biodiversity.
Published Comprehensive insulin signalling map shows interplay between genes and diet



Researchers have produced a comprehensive picture of insulin signalling in mice and suggest that it is shaped by entangled effects of genetics and diet.
Published Researchers discover genes behind antibiotic resistance in deadly superbug infections



Researchers have uncovered new genetic insights into Staphylococcus aureus, revealing what makes the bacterium so dangerous when it enters the blood.
Published Ultrathin nanotech promises to help tackle antibiotic resistance


Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation -- which has undergone advanced pre-clinical trials -- is effective against a broad range of drug-resistant bacterial cells, including 'golden staph', which are commonly referred to as superbugs.
Published Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter


Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.
Published Both high-protein and normal-protein diets are effective for T2D management



New findings indicate that the type of protein in the diet is not as important as the overall amount of weight loss for those with Type 2 diabetes. 106 adults with T2D were randomly assigned to either the high-protein or normal-protein diet for 52 weeks. Both diets were energy-restricted. The high-protein diet included recommendations to include lean beef in the diet, while the normal-protein diet instructed participants to refrain from eating any red meats. The team of researchers found that both a high-protein diet (40 percent of total calories from protein) and a moderate-protein diet (21 percent of total calories from protein) were effective in improving glucose control, weight loss and body composition in people with Type 2 diabetes.
Published 3D printing with coffee: Turning used grounds into caffeinated creations



Coffee could be the key to reducing 3D printing waste, according to a new study. Researchers have developed a method for 3D printing using a paste made out of old coffee grounds.
Published You say tomato, these scientists say evolutionary mystery



Biologists have found evidence for evolutionary 'syndromes'-- sets of traits that occur together -- that help to explain how tomatoes first evolved their distinctive blend of color, sweetness, acidity and aroma. The research not only shines a light on how fruits evolve in the wild, but will also be valuable to crop-improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.
Published Super antifreeze in cells: The ability to survive in ice and snow developed in animals far earlier than we thought



More than 400 million years ago, an insect-like animal called the springtail developed a small protein that prevents its cells from freezing.
Published Researcher helps boost immune system memory against influenza



Researchers are one step closer to making the T cell army stronger. In a recent study, researchers found that by manipulating one molecular signaling pathway in the T cells that participate in clearing influenza virus in the lungs, the strength and longevity of immunological memory produced can be improved.
Published Auxin signaling pathway controls root hair formation for nitrogen uptake



Root hairs represent a low-cost strategy to enhance nutrient uptake because they can significantly increase the nutrient-acquiring surface of plant roots. While primary and lateral roots are stimulated to elongate when plants grow under mild nitrogen deficiency, the existence of such a foraging response for root hairs and its underlying regulatory mechanism remain elusive. Now, researchers have revealed a framework composed of specific molecular players meditating auxin synthesis, transport and signaling that triggers root hair elongation for nitrogen acquisition.
Published Malaria-causing parasites resistant to both treatment and detection have emerged in Ethiopia



Genomic surveillance has revealed mutations in malaria-causing parasites that will complicate efforts to eradicate the disease in Africa.
Published A new way to create germ-killing light


A research team has created an aluminum-nitride device that can convert visible light into deep-ultraviolet light through the process of second harmonic generation. This work can lead to the development of practical devices that can sterilize surfaces with ultraviolet radiation while using less energy.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published Nutrients drive cellular reprogramming in the intestine



Researchers have unveiled an intriguing phenomenon of cellular reprogramming in mature adult organs, shedding light on a novel mechanism of adaptive growth. The study, which was conducted on fruit flies (Drosophila), provides further insights into dedifferentiation -- where specialized cells that have specific functions transform into less specialized, undifferentiated cells like stem cells.
Published These worms have rhythm



Researchers have developed a new imaging technique to observe active gene expression in real time. They found that four molecules work together to control the timing of each stage of the C. elegans worm's development. This timekeeping process could provide important clues about the natural rhythm of development in humans and other animals.
Published Bacteria generate electricity from wastewater


In a breakthrough for the field of bioelectronics, researchers have enhanced the ability of E. coli bacteria to generate electricity. The innovative approach only offers a sustainable solution for organic waste processing while outperforming previous state-of-the-art technologies, opening new horizons for versatile microbial electricity production.