Showing 20 articles starting at article 1421
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Physics: General
Published Novel C. diff structures are required for infection, offer new therapeutic targets



Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles.
Published Shedding new light on sugars, the 'dark matter' of cellular biology



Chemists have developed a new tool for detecting interactions between sugars and lectins, a discovery that could help in the fight against diseases like cancer.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published How tiny hinges bend the infection-spreading spikes of a coronavirus



Far from being stiff and pointy, a coronavirus's infectious spikes are shaped like chicken drumsticks with the meaty part facing out, and the meaty part can tilt every which way on its slender stalk. A new study suggests that disabling those hinges could block infection.
Published A tale of two proteins: Fundamental research could make growing better crops like clockwork



Rhomboid-like protein 10, or RBL10, is thought to be an enzyme that degrades other proteins in the chloroplast membrane, but its function is largely unknown. Researchers are studying how RBL10 affects photosynthetic membrane lipid metabolism, an essential process in photosynthesis.
Published Hormonal contraceptives in teens may alter risk assessment, rat study suggests



Hormonal contraceptives taken by adolescents may influence development of the brain in a way that alters the recognition of risks, a new study in rats suggests.
Published Evolution of taste: Early sharks were able to perceive bitter substances



New genetic data show that humans and sharks share bitter taste receptors, even though their evolutionary pathways separated nearly 500 million years ago.
Published New discovery on how green algae count cell divisions illuminates key step needed for the evolution of multicellular life



An international research team has made an unexpected discovery of a biased counting mechanism used by the single-celled green alga Chlamydomonas to control cell division.
Published How marine bristle worms use a special protein to distinguish between sunlight and moonlight



A research team has presented its findings on the functioning of an atypical cryptochrome protein (Cry). These proteins are found in a variety of organisms, and they are often involved in light-controlled biological processes. The marine bristle worm Platynereis dumerilii, for example, employs a special Cry protein designated L-Cry to distinguish between sunlight and moonlight as well as between different moon phases. This is essential for the worms to synchronize their reproduction to the full moon phase via an inner monthly calendar, also called circalunar clock.
Published Cycle of fasting and feeding is crucial for healthy aging



Fasting interventions, which involve alternating periods of fasting and refeeding, are generally thought to improve health. But these interventions don't work as well in old animals. The question is: Why? By studying the short-lived killifish, researchers have shown that older fish deviate from a youthful fasting and refeeding cycle, and instead enter a state of perpetual fasting, even when ingesting food. However, the benefits of refeeding after fasting in old killifish can be restored by genetically activating a specific subunit of AMP kinase, an important sensor of cellular energy. These mutant fish experienced improved health and longevity, indicating that both fasting and refeeding are needed to confer health benefits and act through AMP kinase to do so.
Published Tracking down quantum flickering of the vacuum



Absolutely empty -- that is how most of us envision the vacuum. Yet, in reality, it is filled with an energetic flickering: the quantum fluctuations. Experts are currently preparing a laser experiment intended to verify these vacuum fluctuations in a novel way, which could potentially provide clues to new laws in physics. A research team has developed a series of proposals designed to help conduct the experiment more effectively -- thus increasing the chances of success.
Published Ground-breaking discovery could pave the way for new therapies to prevent cardiovascular disease and stroke



Researchers have discovered the mechanism by which cholesterol in our diet is absorbed into our cells. This discovery opens up new opportunities for therapeutic intervention to control cholesterol uptake that could complement other therapies and potentially save lives.
Published Photo-induced superconductivity on a chip



Researchers have shown that a previously demonstrated ability to turn on superconductivity with a laser beam can be integrated on a chip, opening up a route toward opto-electronic applications.
Published Forming ice: There's a fungal protein for that



New research explores how proteins produced by a common fungus trigger ice nucleation at warm temperatures. The study holds potential implications for improving our understanding of how life affects precipitation and climate.
Published New study indicates C4 crops less sensitive to ozone pollution than C3 crops



Researchers have studied the effects of elevated O3 on five C3 crops (chickpea, rice, snap bean, soybean, wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, switchgrass). Their findings indicate that C4 crops are much more tolerant of high O3 concentrations than C3 crops.
Published The Goldilocks Effect: Researchers establish framework for protein regulation



Researchers are working to understand how protein quality control works in cells.
Published New drug-like molecule extends lifespan, ameliorates pathology in worms and boosts function in mammalian muscle cells



Having healthy mitochondria, the organelles that produce energy in all our cells, usually portends a long healthy life whether in humans or in C. elegans, a tiny, short-lived nematode worm often used to study the aging process. Researchers have identified a new drug-like molecule that keeps mitochondria healthy via mitophagy, a process that removes and recycles damaged mitochondria in multicellular organisms. The compound, dubbed MIC, is a natural compound that extended lifespan in C. elegans, ameliorated pathology in neurodegenerative disease models of C. elegans, and improved mitochondrial function in mouse muscle cells.
Published Twisted magnets make brain-inspired computing more adaptable



Researchers used chiral (twisted) magnets as their computational medium and found that, by applying an external magnetic field and changing temperature, the physical properties of these materials could be adapted to suit different machine-learning tasks.
Published quantum mechanics: Unlocking the secrets of spin with high-harmonic probes



Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of researchers has learned to control with remarkable precision, potentially redefining the future of electronics and data storage.
Published A revolution in crystal structure prediction of pharmaceutical drugs



Scientists have redefined the state-of-the-art in modeling and predicting the free energy of crystals. Their work shows that crystal form stability under real-world temperature and humidity conditions can be reliably and affordably predicted through computer simulation.