Showing 20 articles starting at article 1341

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Physics: General

Return to the site home page

Physics: General Physics: Optics
Published

Optical data storage breakthrough      (via sciencedaily.com)     Original source 

Physicists have developed a technique with the potential to enhance optical data storage capacity in diamonds. This is possible by multiplexing the storage in the spectral domain.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth      (via sciencedaily.com)     Original source 

Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells. 

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

New theory unites Einstein's gravity with quantum mechanics      (via sciencedaily.com)     Original source 

The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all. 

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physics: Superconducting Nanowires Detect Single Protein Ions      (via sciencedaily.com)     Original source 

An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.

Physics: General
Published

Engineers tackle hard-to-map class of materials      (via sciencedaily.com)     Original source 

Materials scientists mapped the structural features of a 2D ferroelectric material made of tin and selenium atoms using a new technique that can be applied to other 2D van der Waals ferroelectrics, unlocking their potential for use in electronics and other applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

More than 100 'magic mushroom' genomes point the way to new cultivars      (via sciencedaily.com)     Original source 

Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases      (via sciencedaily.com)     Original source 

While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

Biology: Biochemistry Biology: Cell Biology Biology: General
Published

New study maps ketamine's effects on brain      (via sciencedaily.com)     Original source 

A mouse study found that the drug ketamine can alter the brain's dopamine system, boosting the case for more targeted medical use.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Pathogens use force to breach immune defenses, study finds      (via sciencedaily.com)     Original source 

New research has revealed a previously unknown process through which pathogens are able to defeat a cell's defense mechanisms with physical force. The discovery represents a potential game-changer in the fight against intracellular pathogens, which cause infectious diseases such as tuberculosis, malaria and chlamydia.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Zoology Ecology: Sea Life
Published

Scientists navigate uncharted waters in fish immunology research      (via sciencedaily.com)     Original source 

Upon infection or immunization, all jawed vertebrate species generate proteins called antibodies that bind and neutralize pathogens. Strong and long-lasting antibody responses in warm-blooded species such as mammals are produced in secondary lymphoid microstructures (SLMs) among which germinal centers (GCs) are the centerpiece. Despite the apparent absence of GCs or similar SLMs in cold-blooded vertebrates (e.g., fish), these species can mount significant antibody responses that can persist for several months. Thus, for decades, the outstanding question has remained as to how and where antibody responses are generated in species that lack GCs or analogous SLM structures.

Biology: Biotechnology Biology: Cell Biology Biology: Molecular Ecology: Invasive Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Unlocking the secret strength of marine mussels      (via sciencedaily.com)     Original source 

How do you create strong, yet quick-release connections between living and non-living tissues? This is a question that continues to puzzle bioengineers who aim to create materials that bond together for advanced biomedical applications. Looking to nature for inspiration, this research zeroed in on the marine mussel byssus, a fibrous holdfast, which these bivalve mollusks use to anchor themselves in seashore habitats.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

A patch of protection against Zika virus      (via sciencedaily.com)     Original source 

A simple-to-apply, needle-free vaccine patch is being developed to protect people from the potentially deadly mosquito-borne Zika virus.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Shedding light on the synthesis of sugars before the origin of life      (via sciencedaily.com)     Original source 

Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability on early Earth is unclear since these molecules are unstable. Now, researchers reveal a chemical pathway compatible with early Earth conditions, by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding life's origin.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Physics: General
Published

Harvesting more solar energy with supercrystals      (via sciencedaily.com)     Original source 

Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Control over friction, from small to large scales      (via sciencedaily.com)     Original source 

Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Harnessing the power of a parasite that can stop pain      (via sciencedaily.com)     Original source 

For the first time, scientists have begun to figure out why the disfiguring skin lesions caused by cutaneous leishmaniasis don't hurt.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers show an old law still holds for quirky quantum materials      (via sciencedaily.com)     Original source 

Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.