Showing 20 articles starting at article 1341

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

World's fastest electron microscope      (via sciencedaily.com)     Original source 

Researchers have succeeded in filming the interactions of light and matter in an electron microscope with attosecond time resolution.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

A nanocrystal shines on and off indefinitely      (via sciencedaily.com)     Original source 

Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics Space: Astrophysics Space: General Space: Structures and Features
Published

Under pressure: Foundations of stellar physics and nuclear fusion investigated      (via sciencedaily.com)     Original source 

Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.

Physics: Acoustics and Ultrasound Physics: General
Published

Actively reducing noise by ionizing air      (via sciencedaily.com)     Original source 

Scientists show that a thin layer of plasma, created by ionizing air, could be promising as an active sound absorber, with applications in noise control and room acoustics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How the flu virus hacks our cells      (via sciencedaily.com)     Original source 

Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Researchers use 'natural' system to identify proteins most useful for developing an effective HIV vaccine      (via sciencedaily.com)     Original source 

Scientists have spent years trying to develop an effective HIV vaccine, but none have proven successful. Based on findings from a recently published study, a research team may have put science one step closer to that goal.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists unveil RNA-guided mechanisms driving cell fate      (via sciencedaily.com)     Original source 

The early stages of embryonic development contain many of life's mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments. Researchers have now characterized a critical time in mammalian embryonic development using powerful and innovative imaging techniques.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons      (via sciencedaily.com)     Original source 

Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Acoustics and Ultrasound Physics: General Physics: Optics
Published

Source-shifting metastructures composed of only one resin for location camouflaging      (via sciencedaily.com)     Original source 

Acoustic source-shifters make observers mis-perceive the location of sound by reproducing a sound emanating from a location different from the actual location of a sound source. Researchers have now developed a design approach to produce high-performance source-shifters using a common polymer for location camouflage. Utilizing inverse design based on topology optimization, this development could pave the way for advanced augmented reality and holography technology.

Biology: Biochemistry Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Biological specimens imaged with X-rays without damage      (via sciencedaily.com)     Original source 

Scientists have managed to image delicate biological structures without damaging them. Their new technique generates high resolution X-ray images of dried biological material that has not been frozen, coated, or otherwise altered beforehand -- all with little to no damage to the sample. This method, which is also used for airport baggage scanning, can generate images of the material at nanometer resolution.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics
Published

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?      (via sciencedaily.com)     Original source 

The absolute internal quantum efficiency (IQE) of indium gallium nitride (InGaN) based blue light-emitting diodes (LEDs) at low temperatures is often assumed to be 100%. However, a new study has found that the assumption of always perfect IQE is wrong: the IQE of an LED can be as low as 27.5%.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Ecology: Endangered Species Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Groundbreaking images of root chemicals offer new insights on plant growth      (via sciencedaily.com)     Original source 

Applying imaging technology to plant roots, researchers have developed a new understanding of chemicals that are responsible for plant growth. The chemical 'roadmap' identifies where key molecules are distributed along corn roots and how their placement factors into the plant's maturation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Protein-based nano-'computer' evolves in ability to influence cell behavior      (via sciencedaily.com)     Original source 

The first protein-based nano-computing agent that functions as a circuit has been created. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Statistics Offbeat: Computers and Math Offbeat: General Physics: General
Published

Effective as a collective: Researchers investigate the swarming behavior of microrobots      (via sciencedaily.com)     Original source 

Miniaturization is progressing rapidly in just any field and the trend towards the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Forging a dream material with semiconductor quantum dots      (via sciencedaily.com)     Original source 

Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Research offers clues for potential widespread HIV cure in people      (via sciencedaily.com)     Original source 

New animal research is helping explain why at least five people have become HIV-free after receiving a stem cell transplant, and may bring scientists closer to developing what they hope will be a widespread cure for the virus that causes AIDS. A new study describes how two nonhuman primates were cured of the monkey form of HIV after receiving a stem cell transplant. It also reveals that two circumstances must co-exist for a cure to occur and documents the order in which HIV is cleared from the body.

Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Zoology
Published

How sweet it is: The fruit fly gut influences reproduction by 'tasting' fructose      (via sciencedaily.com)     Original source 

A research group has found that in fruit flies (Drosophila melanogaster), circulating fructose derived from dietary sugar is needed for enhanced egg production after mating. In this species, circulating fructose is required for an increase in germline stem cells, which divide into reproductive cells. This increase leads to enhanced post-mating egg production. These findings may help to determine whether fructose influences the reproduction of mammals, including humans.