Showing 20 articles starting at article 1101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Energy: Alternative Fuels

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers reveal a map to study novel form of cell-to-cell communication      (via sciencedaily.com)     Original source 

An international team of researchers lays the foundation to examine how extracellular RNA and its carrier proteins found in bodily fluids function in a healthy as well as a diseased setting, potentially providing a means to accurately implement early detection and monitor disease processes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General
Published

Synthetic biology meets fashion in engineered silk      (via sciencedaily.com)     Original source 

Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Reinforcement learning: From board games to protein design      (via sciencedaily.com)     Original source 

An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Fungal genetics could help develop novel biotechnologies      (via sciencedaily.com)     Original source 

An essential pillar of Earth's ecological system, fungi have long been used to better the lives of humans. While these organisms are still vastly understudied, a new review paper suggests that their unique genomes could be used to make progress in the biotech industry.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Engineering the next generation of cell and gene therapies      (via sciencedaily.com)     Original source 

Investigators are developing a novel way to treat amyotrophic lateral sclerosis (ALS) and retinitis pigmentosa using engineered stem cells that may eventually lead to personalized treatments.

Energy: Alternative Fuels Environmental: General
Published

One-step solution-coating method to advance perovskite solar cell manufacturing and commercialization      (via sciencedaily.com)     Original source 

Perovskite solar cells (PSCs) are considered a promising candidate for next-generation photovoltaic technology with high efficiency and low production cost, potentially revolutionizing the renewable energy industry. However, the existing layer-by-layer manufacturing process presents challenges that have hindered the commercialization of this technology. Recently, researchers have developed an innovative one-step solution-coating approach that simplifies the manufacturing process and lowers the commercialization barriers for PSCs.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Simple addition to corn bran could boost grain's nutritional value 15-35%      (via sciencedaily.com)     Original source 

What if, by adding a couple of cell layers inside a corn kernel, the grain could become significantly richer in essential nutrients like iron, zinc, and protein? Such an improvement could benefit people who rely on corn for a large portion of their diet, as in many parts of the global south.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Study links 'stuck' stem cells to hair turning gray      (via sciencedaily.com)     Original source 

Certain stem cells have a unique ability to move between growth compartments in hair follicles, but get stuck as people age and so lose their ability to mature and maintain hair color, a new study shows.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Loops, flags and tension in DNA      (via sciencedaily.com)     Original source 

Two protein complexes carry the major responsibility for the spatial organization of chromosomes in our cell nuclei. DNA tension plays a surprising role in this. Nanoscientists now publish how they have visualized this.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New mechanism for DNA folding      (via sciencedaily.com)     Original source 

A hitherto unknown mechanism for DNA folding is described in a new study. The findings provide new insights into chromosomal processes that are vital to both normal development and to prevent disease.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Graphene Environmental: General Geoscience: Geochemistry Physics: Optics
Published

New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation      (via sciencedaily.com)     Original source 

Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Novel nanocages for delivery of small interfering RNAs      (via sciencedaily.com)     Original source 

Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species
Published

Fluorescent blue coumarins in a folk-medicine plant could help us see inside cells      (via sciencedaily.com)     Original source 

Plants that glow under ultraviolet (UV) light aren't only a figment of science fiction TV and movies. Roots of a traditional medicine plant called the orange climber, or Toddalia asiatica, can fluoresce an ethereal blue hue. And now, researchers have identified two coumarin molecules that could be responsible. These natural coumarins have unique fluorescent properties, and one of the compounds could someday be used for medical imaging.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry
Published

Using machine learning to find reliable and low-cost solar cells      (via sciencedaily.com)     Original source 

Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.

Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

Next decade decisive for PV growth on the path to 2050      (via sciencedaily.com)     Original source 

Global experts on solar power strongly urge a commitment to the continued growth of photovoltaic (PV) manufacturing and deployment to power the planet, arguing that lowballing projections for PV growth while waiting for a consensus on other energy pathways or the emergence of technological last-minute miracles 'is no longer an option.'

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics
Published

Chemists propose ultrathin material for doubling solar cell efficiency      (via sciencedaily.com)     Original source 

Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Geoscience: Geochemistry
Published

SpyLigation uses light to switch on proteins      (via sciencedaily.com)     Original source 

Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works. The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

New genetic target for male contraception identified      (via sciencedaily.com)     Original source 

Discovery of a gene in multiple mammalian species could pave the way for a highly effective, reversible and non-hormonal male contraceptive for humans and animals. Researchers identified expression of the gene, Arrdc5, in the testicular tissue of mice, pigs, cattle and humans. When they knocked out the gene in mice, it created infertility only in the males, impacting their sperm count, movement and shape.

Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

A novel platinum nanocluster for improved oxygen reduction reaction in fuel cells      (via sciencedaily.com)     Original source 

Hydrogen, derived from polymer electrolyte fuel cells (PEFCs), is an excellent source of clean energy. However, PEFCs require platinum (Pt), which is a limited resource. Some studies have shown that Pt nanoclusters (NCs) have higher activity than conventionally used Pt nanoparticles, however the origin of their higher activity is unclear. Now, researchers have synthesized a novel Pt NC catalyst with unprecedented activity and identified the reason for its high performance.