Showing 20 articles starting at article 2441
< Previous 20 articles Next 20 articles >
Categories: Biology: Biochemistry, Space: Astrophysics
Published Air quality stations have collected vast stores of DNA by accident, a potentially 'game-changing' discovery for tracking global biodiversity



The accelerating loss of biodiversity and increasing rate of species extinction is a major threat to ecosystems around the globe. And yet, quantifying those losses at a large scale hasn't been possible, in large part due to a lack of the required infrastructure. But a new study shows that a major source for such information already exists in the form of environmental DNA (eDNA), which has been inadvertently collected in filters by thousands of ambient air quality monitoring stations in countries around the world for decades.
Published Webb Space Telescope detects universe's most distant complex organic molecules



Researchers have detected complex organic molecules in a galaxy more than 12 billion light-years away from Earth -- the most distant galaxy in which these molecules are now known to exist. Thanks to the capabilities of the recently launched James Webb Space Telescope and careful analyses from the research team, a new study lends critical insight into the complex chemical interactions that occur in the first galaxies in the early universe.
Published Fungi stores a third of carbon from fossil fuel emissions and could be essential to reaching net zero, new study reveals



Mycorrhizal fungi are responsible for holding up to 36 per cent of yearly global fossil fuel emissions below ground -- more than China emits each year.
Published CRISPR/Cas9 reveals a key gene involved in the evolution of coral skeleton formation



New work uses cutting-edge CRISPR/Cas9 genome editing tools to reveal a gene that's critical to stony corals' ability to build their reef architectures. This research could inform coral conservation and restoration efforts.
Published The other side of the story: How evolution impacts the environment



Researchers show that an evolutionary change in the length of lizards' legs can have a significant impact on vegetation growth and spider populations on small islands in the Bahamas. This is one of the first times, the researchers say, that such dramatic evolution-to-environment effects have been documented in a natural setting.
Published NASA's Webb Space Telescope peers behind bars



A delicate tracery of dust and bright star clusters threads across this image from the James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image -- a composite from two of Webb's instruments.
Published Human factors affect bees' communication



Human influences have the potential to reduce the effectivity of communication in bees adding further stress to struggling colonies, according to new analysis.
Published Dying stars' cocoons could be new source of gravitational waves



Although astrophysicists theoretically should be able to detect gravitational waves from a single, non-binary source, they have yet to uncover these elusive signals. Now researchers suggest looking at a new, unexpected and entirely unexplored place: The turbulent, energetic cocoons of debris that surround dying massive stars.
Published Early universe crackled with bursts of star formation, Webb shows



Among the most fundamental questions in astronomy is: How did the first stars and galaxies form? NASA's James Webb Space Telescope is already providing new insights into this question. One of the largest programs in Webb's first year of science is the JWST Advanced Deep Extragalactic Survey, or JADES, which will devote about 32 days of telescope time to uncover and characterize faint, distant galaxies. While the data is still coming in, JADES already has discovered hundreds of galaxies that existed when the universe was less than 600 million years old. The team also has identified galaxies sparkling with a multitude of young, hot stars.
Published Weigh a quasar's galaxy with precision



Scientists have managed to weigh -- more precisely than any other technique -- a galaxy hosting a quasar, thanks to the fact that it acts as a gravitational lens. Detection of strong gravitational lensing quasars is expected to multiply with the launch of Euclid this summer.
Published Eventually everything will evaporate, not only black holes



New theoretical research has shown that Stephen Hawking was likely right about black holes, although not completely. Due to Hawking radiation, black holes will eventually evaporate, but the event horizon is not as crucial as had been believed. Gravity and the curvature of spacetime cause this radiation too. This means that all large objects in the universe, like the remnants of stars, will eventually evaporate.
Published Genomes of 233 primate species sequenced



Researchers from 24 countries have analyzed the genomes of 809 individuals from 233 primate species, generating the most complete catalog of genomic information about our closest relatives to date. The project provides new insights into the evolution of primates, including humans, and their diversity. In baboons, for example, hybridization and gene flow between different species occurred in the past and is still ongoing in several regions of their range. This makes baboons a good model for the evolution of early human lineages within and outside Africa. In addition, using a specially designed AI algorithm, the genomic data enable new insights into the genetic causes of human diseases.
Published Mysterious dashes revealed in Milky Way's center



In the early 1980s, astronomers discovered gigantic, one-dimensional filaments dangling vertically near Sagittarius A*, our galaxy's central supermassive black hole. Now, astronomers have discovered a new population of filaments -- but these threads are much shorter and lie horizontally or radially, spreading out like spokes on a wheel from the black hole.
Published Ancient viruses discovered in coral symbionts' DNA



The symbiotic organisms that live in corals and provide them with their dramatic colors contain fragments of ancient RNA viruses that are as much as 160 million years old.
Published Researchers cultivate archaea that break down crude oil in novel ways



The seafloor is home to around one-third of all the microorganisms on the Earth and is inhabited even at a depth of several kilometers. Only when it becomes too hot does the abundance of microorganisms appear to decline. But how, and from what, do microorganisms in the deep seafloor live? How do their metabolic cycles work and how do the individual members of these buried communities interact? Researchers have now been able to demonstrate in laboratory cultures how small, liquid components of crude oil are broken down through a new mechanism by a group of microorganisms called archaea.
Published Biodegradable plastic from sugar cane also threatens the environment



Plastic made from cane sugar also threatens the environment. Researchers from the University of Gothenburg have found that perch change their behavior when exposed to so-called bioplastic.
Published Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants



Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.
Published DNA damage repaired by antioxidant enzymes



In crisis, the nucleus calls antioxidant enzymes to the rescue. The nucleus being metabolically active is a profound paradigm shift with implications for cancer research.
Published Ticks prove resilient to extreme temperatures



A recent study shows blacklegged ticks (Ixodes scapularis) are actually really good at surviving extreme cold and heat in nature. Previous lab research suggests that even short periods of especially warm or cold conditions should easily kill ticks, but the a new analysis reveals this is only the case for larval ticks in the environment.
Published Engineers report low-cost human biomarker sensor designs



Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.