Showing 20 articles starting at article 1081
< Previous 20 articles Next 20 articles >
Categories: Ecology: Sea Life, Physics: General
Published Teasing strange matter from the ordinary



In a unique analysis of experimental data, nuclear physicists have made observations of how lambda particles, so-called 'strange matter,' are produced by a specific process called semi-inclusive deep inelastic scattering (SIDIS). What's more, these data hint that the building blocks of protons, quarks and gluons, are capable of marching through the atomic nucleus in pairs called diquarks, at least part of the time.
Published Swimming secrets of prehistoric reptiles unlocked by new study



The diverse swimming techniques of the ancient reptiles that ruled the Mesozoic seas have been revealed.
Published Scientists discover pristine deep-sea coral reefs in the Galápagos Marine Reserve



Scientists have discovered extensive, ancient deep-sea coral reefs within the Galápagos Marine Reserve (GMR) -- the first of their kind ever to be documented inside the marine protected area (MPA) since it was established in 1998. The first reef observed was found at 400-600m (1,310-1,970 feet) depth at the summit of a previously unmapped seamount in the central part of the archipelago and supports a breathtaking mix of deep marine life.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Coastal species persist on high seas on floating plastic debris



The high seas have been colonized by a surprising number of coastal marine invertebrate species, which can now survive and reproduce in the open ocean, contributing strongly to the floating community composition. Researchers found coastal species, representing diverse taxonomic groups and life history traits, in the eastern North Pacific Subtropical Gyre on over 70 percent of the plastic debris they examined. Further, the debris carried more coastal species than open ocean species.
Published Less ice, fewer calling seals



For several years, a team of researchers used underwater microphones to listen for seals at the edge of the Antarctic. Their initial findings indicate that sea-ice retreat has had significant effects on the animals' behavior: when the ice disappears, areas normally full of vocalizations become very quiet.
Published Learning about what happens to ecology, evolution, and biodiversity in times of mass extinction



Studying mass extinction events from the past can build our understanding of how ecosystems and the communities of organisms within them respond. Researchers are looking to the Late Devonian mass extinction which happened around 370 million years ago to better understand how communities of organisms respond in times of great upheaval.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published How skates learned to fly through water



Genes are not the only drivers of evolution. The iconic fins of skates are caused by changes in the non-coding genome and its three-dimensional structure, an international research team reports.
Published Backscattering protection in integrated photonics is impossible with existing technologies



Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.
Published Pollution monitoring through precise detection of gold nanoparticles in woodlice



Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.
Published Better understanding the physics of our universe



Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.
Published Jellyfish and fruit flies shed light on the origin of hunger regulation



To survive, all organisms must regulate their appetite. Hormones and small proteins called neuropeptides perform this process, stimulating feelings of hunger and fullness. When researchers noted the similarities between GAWamide, a neuropeptide that regulates feeding in the Cladonema jellyfish, and myoinhibitory peptide, a neuropeptide that regulates feeding in fruit flies, they decided to test whether they could exchange the two. Their success in doing so highlights the deep evolutionary origins of feeding regulation.
Published Merons and antimerons



Sliding and twisting of van der Waals layers can produce fascinating physical phenomena. Scientists show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons.
Published How to see the invisible: Using the dark matter distribution to test our cosmological model



Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Two-dimensional nanoparticles with great potential



A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.
Published Discovery of ferroelectricity in an elementary substance



Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.
Published Random matrix theory approaches the mystery of the neutrino mass



Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.