Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Ecology: Trees
Published Gone for good? California's beetle-killed, carbon-storing pine forests may not come back
(via sciencedaily.com)
Original source 
Ponderosa pine forests in the Sierra Nevada that were wiped out by western pine beetles during the 2012-2015 megadrought won't recover to pre-drought densities, reducing an important storehouse for atmospheric carbon.
Published DMI allows magnon-magnon coupling in hybrid perovskites
(via sciencedaily.com)
Original source 
An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Absolute zero in the quantum computer
(via sciencedaily.com)
Original source 
Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Insect decline also occurs in forests
(via sciencedaily.com)
Original source 
The number of insects has been declining for years. This has already been well documented for agricultural areas. In forests, however, temporal trends are mostly studied for insect species that are considered pests. Now, a research team has studied the trends of very many insect species in German forests. Contrary to what the researchers had suspected, the results showed that the majority of the studied species are declining.
Published Researchers assemble pathogen 'tree of life'
(via sciencedaily.com)
Original source 
Researchers provide open-access tool to capture new data on a global plant destroyer, Phytophthora.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials
(via sciencedaily.com)
Original source 
Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Can insights from the soapbark tree change the way we make vaccines?
(via sciencedaily.com) 
The medicinal secrets of the Chilean soapbark tree have been laid bare, unlocking a future of more potent, affordable, and sustainably sought vaccines. Researchers have taken a major step forward in addressing this problem, by using a combination of genome mining and bioengineering techniques to produce saponin-based vaccine adjuvants in the laboratory without harvesting material directly from trees.
Published 'Y-ball' compound yields quantum secrets
(via sciencedaily.com) 
Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator
(via sciencedaily.com) 
Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published Forest growing season in eastern U.S. has increased by a month
(via sciencedaily.com) 
The growing period of hardwood forests in eastern North America has increased by an average of one month over the past century as temperatures have steadily risen, a new study has found.
Published Douglas-fir in Klamath Mountains are in 'decline spiral'
(via sciencedaily.com) 
Increases in mortality among Douglas-fir in the Klamath Mountains are the result of multiple factors that have the iconic tree in a 'decline spiral' in parts of the region.
Published Scientists open door to manipulating 'quantum light'
(via sciencedaily.com) 
How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Superconducting amplifiers offer high performance with lower power consumption
(via sciencedaily.com) 
Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future
(via sciencedaily.com) 
The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers
(via sciencedaily.com) 
Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.
Published Mountain forests are being lost at an accelerating rate, putting biodiversity at risk
(via sciencedaily.com) 
More than 85% of the world's bird, mammal, and amphibian species live in mountains, particularly in forest habitats, but researchers report that these forests are disappearing at an accelerating rate. Globally, we have lost 78.1 million hectares (7.1%) of mountain forest since 2000 -- an area larger than the size of Texas. Much of the loss occurred in tropical biodiversity hotspots, putting increasing pressure on threatened species.
Published Breakthrough in the understanding of quantum turbulence
(via sciencedaily.com) 
Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.
Published Cleaning up the atmosphere with quantum computing
(via sciencedaily.com) 
Practical carbon capture technologies are still in the early stages of development, with the most promising involving a class of compounds called amines that can chemically bind with carbon dioxide. Researchers now deploy an algorithm to study amine reactions through quantum computing. An existing quantum computer cab run the algorithm to find useful amine compounds for carbon capture more quickly, analyzing larger molecules and more complex reactions than a traditional computer can.
Published Magnetism fosters unusual electronic order in quantum material
(via sciencedaily.com) 
Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published In the world's smallest ball game, scientists throw and catch single atoms using light
(via sciencedaily.com) 
Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.