Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Ecology: Trees
Published Diamonds and rust help unveil 'impossible' quasi-particles
(via sciencedaily.com)
Original source 
Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Crocodile family tree mapped: New light shed on croc evolution
(via sciencedaily.com)
Original source 
Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Public gardens contribute to invasives problem
(via sciencedaily.com)
Original source 
Some nonnative plants cultivated in public gardens or arboretums are escaping to become invasive in wild forests.
Published Researchers show an old law still holds for quirky quantum materials
(via sciencedaily.com)
Original source 
Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published 600 years of tree rings reveal climate risks in California
(via sciencedaily.com)
Original source 
The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published Quantum tool opens door to uncharted phenomena
(via sciencedaily.com)
Original source 
Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges
(via sciencedaily.com)
Original source 
A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published The Fens of eastern England once held vast woodlands
(via sciencedaily.com)
Original source 
The Fens of eastern England, a low-lying, extremely flat landscape dominated by agricultural fields, was once a vast woodland filled with huge yew trees, according to new research. Scientists have studied hundreds of tree trunks, dug up by Fenland farmers while ploughing their fields. The team found that most of the ancient wood came from yew trees that populated the area between four and five thousand years ago.
Published Looking for 'LUCA' and the timing of cellular evolution
(via sciencedaily.com)
Original source 
LUCA, the 'last universal common ancestor' of all living organisms, lived 4.32 to at most 4.52 billion years ago. What LUCA looked like is unknown, but it must have been a cell with among others ribosomal proteins and an ATP synthase.
Published Forest modeling shows which harvest rotations lead to maximum carbon sequestration
(via sciencedaily.com)
Original source 
Forest modeling shows that a site's productivity -- an indicator of how fast trees grow and how much biomass they accumulate -- is the main factor that determines which time period between timber harvests allows for maximum above-ground carbon sequestration.
Published Keep it secret: Cloud data storage security approach taps quantum physics
(via sciencedaily.com)
Original source 
Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published Diverse forests hold huge carbon potential, as long as we cut emissions
(via sciencedaily.com)
Original source 
New study estimates that natural forest recovery could capture approximately 226 Gigatonnes (Gt) of carbon, but only if we also reduce greenhouse gas emissions. Achieving these results requires community-driven efforts to conserve and restore biodiversity. In brief: Forests have the potential to capture 226 Gigatonnes (Gt) of carbon in areas where they would naturally exist. This forest potential can only be achieved alongside emissions cuts. Sixty-one percent of the forest potential can be achieved by protecting existing forests and allowing them to regrow to maturity. Thirty-nine percent can be achieved by reconnecting fragmented landscapes through community-driven ecosystem restoration and management. A natural diversity of species is needed to maximize the forest carbon potential.
Published Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken
(via sciencedaily.com)
Original source 
Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken. Other threats to UK forests include competition with society for water, viral diseases, and extreme weather affecting forest management.
Published A database unifies the information on damage to European forests over the last 60 years
(via sciencedaily.com)
Original source 
Researchers are creating a database that harmonizes the recording of disturbances caused by insects and diseases in forests in 8 European countries by combining remote sensing, satellite images and field data.
Published The fascinating relationship between mice and a plant that flowers once a century in terms of seed dispersal
(via sciencedaily.com)
Original source 
Researchers have discovered several factors that affect field mouse behavior using seeds from dwarf bamboo plants, a plant that flowers once in a century. Their findings not only suggest the previously underappreciated role of mice in the forest ecosystem, but also show that they store small sasa seeds for later use. These challenge a previously held model of mouse behavior.
Published Large herbivores such as elephants, bison and moose contribute to tree diversity
(via sciencedaily.com)
Original source 
Using global satellite data, a research team has mapped the tree cover of the world's protected areas. The study shows that regions with abundant large herbivores in many settings have a more variable tree cover, which is expected to benefit biodiversity overall.
Published The kids aren't alright: Saplings reveal how changing climate may undermine forests
(via sciencedaily.com)
Original source 
Researchers studied how young trees respond to a hotter, drier climate. Their findings can help shape forest management policy and our understanding of how landscapes will change.
Published What a '2D' quantum superfluid feels like to the touch
(via sciencedaily.com)
Original source 
Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing
(via sciencedaily.com)
Original source 
Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers
(via sciencedaily.com)
Original source 
Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.