Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Mathematics: General, Physics: Quantum Physics
Published Breakthrough: Scientists develop artificial molecules that behave like real ones
(via sciencedaily.com)
Original source 
Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Schrödinger's cat makes better qubits
(via sciencedaily.com)
Original source 
Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Physicists discover an exotic material made of bosons
(via sciencedaily.com)
Original source 
Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.
Published Calculation shows why heavy quarks get caught up in the flow
(via sciencedaily.com)
Original source 
Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence
(via sciencedaily.com)
Original source 
A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light
(via sciencedaily.com)
Original source 
Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Published Finally solved! The great mystery of quantized vortex motion
(via sciencedaily.com)
Original source 
Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.
Published Reading between the cracks: Artificial intelligence can identify patterns in surface cracking to assess damage in reinforced concrete structures
(via sciencedaily.com)
Original source 
Researchers are trying to make the process more efficient and definitive by using artificial intelligence, combined with a classic mathematical method for quantifying web-like networks, to determine how damaged a concrete structure is, based solely on its pattern of cracking.
Published The 'breath' between atoms -- a new building block for quantum technology
(via sciencedaily.com)
Original source 
Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published First X-ray of a single atom
(via sciencedaily.com)
Original source 
Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published A nanocrystal shines on and off indefinitely
(via sciencedaily.com)
Original source 
Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons
(via sciencedaily.com)
Original source 
Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published 'A blessing in disguise!' Physics turning bad into good
(via sciencedaily.com)
Original source 
Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.
Published Forging a dream material with semiconductor quantum dots
(via sciencedaily.com)
Original source 
Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Snapshots of photoinjection
(via sciencedaily.com)
Original source 
Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.
Published Quantum scientists accurately measure power levels one trillion times lower than usual
(via sciencedaily.com)
Original source 
Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Quantum matter breakthrough: Tuning density waves
(via sciencedaily.com)
Original source 
Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Uncovering universal physics in the dynamics of a quantum system
(via sciencedaily.com)
Original source 
New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.
Published Curved spacetime in a quantum simulator
(via sciencedaily.com)
Original source 
The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published With new experimental method, researchers probe spin structure in 2D materials for first time
(via sciencedaily.com)
Original source 
In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.