Showing 20 articles starting at article 1021
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Physics: General
Published Magnetism fosters unusual electronic order in quantum material
(via sciencedaily.com) 
Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published Scientists demonstrate time reflection of electromagnetic waves in a groundbreaking experiment
(via sciencedaily.com)
Original source 
Scientists have hypothesized for over six decades the possibility of observing a form of wave reflections known as temporal, or time, reflections. Researchers detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.
Published 3D internal structure of rechargeable batteries revealed
(via sciencedaily.com) 
Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Experiment unlocks bizarre properties of strange metals
(via sciencedaily.com) 
Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures
(via sciencedaily.com) 
Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.
Published Ringing an electronic wave: Elusive massive phason observed in a charge density wave
(via sciencedaily.com) 
Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.
Published In the world's smallest ball game, scientists throw and catch single atoms using light
(via sciencedaily.com) 
Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published 3D battery imaging reveals the secret real-time life of lithium metal cells
(via sciencedaily.com) 
Innovative battery researchers have cracked the code to creating real-time 3D images of the promising but temperamental lithium metal battery as it cycles. A team has succeeded in observing how the lithium metal in the cell behaves as it charges and discharges. The new method may contribute to batteries with higher capacity and increased safety in our future cars and devices.
Published Hitting nuclei with light may create fluid primordial matter
(via sciencedaily.com) 
A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published New kind of transistor could shrink communications devices on smartphones
(via sciencedaily.com) 
One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published A surprising way to trap a microparticle
(via sciencedaily.com) 
New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it
(via sciencedaily.com) 
A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Artificial intelligence (AI) reconstructs motion sequences of humans and animals
(via sciencedaily.com) 
Imagine for a moment, that we are on a safari watching a giraffe graze. After looking away for a second, we then see the animal lower its head and sit down. But, we wonder, what happened in the meantime? Computer scientists have found a way to encode an animal's pose and appearance in order to show the intermediate motions that are statistically likely to have taken place.
Published Viable superconducting material created, say researchers
(via sciencedaily.com) 
Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published Complex oxides could power the computers of the future
(via sciencedaily.com) 
Materials scientists describe in two papers how complex oxides can be used to create very energy-efficient magneto-electric spin-orbit (MESO) devices and memristive devices with reduced dimensions.
Published Graphene quantum dots show promise as novel magnetic field sensors
(via sciencedaily.com) 
Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze
(via sciencedaily.com) 
Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits
(via sciencedaily.com) 
Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published Phone-based measurements provide fast, accurate information about the health of forests
(via sciencedaily.com) 
Researchers have developed an algorithm that uses computer vision techniques to accurately measure trees almost five times faster than traditional, manual methods.
Published Integrating humans with AI in structural design
(via sciencedaily.com) 
A new design process that uses generative design but also seeks feedback from humans is more effective at producing designs that are fully optimized for their purpose.