Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Physics: Acoustics and Ultrasound
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published US Navy Growler jet noise over Whidbey Island could impact 74,000 people's health



As often as four days a week, Boeing EA-18G Growler electronic attack aircraft based at Naval Air Station Whidbey Island fly loops overhead as pilots practice touch-and-go landings. The noise is immense. New research shows that the noise isn't just disruptive -- it presents a substantial risk to public health.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published This sound-suppressing silk can create quiet spaces



Researchers developed a silk fabric, which is barely thicker than a human hair, that can suppress unwanted noise and reduce noise transmission in a large room.
Published Why getting in touch with our 'gerbil brain' could help machines listen better



Researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more adaptable and efficient hearing devices ranging from hearing aids to smartphones.
Published 'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces



Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.
Published Rubber-like stretchable energy storage device fabricated with laser precision



Scientists use laser ablation technology to develop a deformable micro-supercapacitor.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.
Published More economical and sustainable rechargeable batteries



Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.
Published Development of organic semiconductors featuring ultrafast electrons



Collaboration has led to the successful observation of these ultrafast electrons within conducting two-dimensional polymers.
Published Data-driven music: Converting climate measurements into music



A geo-environmental scientist from Japan has composed a string quartet using sonified climate data. The 6-minute-long composition -- entitled 'String Quartet No. 1 'Polar Energy Budget'-- is based on over 30 years of satellite-collected climate data from the Arctic and Antarctic and aims to garner attention on how climate is driven by the input and output of energy at the poles.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published A single atom layer of gold: Researchers create goldene



For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.
Published Quantum electronics: Charge travels like light in bilayer graphene



An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Published Chemistry researchers modify solar technology to produce a less harmful greenhouse gas



Researchers are using semiconductors to harvest and convert the sun's energy into high-energy compounds that have the potential to produce environmentally-friendly fuels.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published Caller ID of the sea: Tagging whale communication and behavior



Biologists use a novel method of simultaneous acoustic tagging to gain insights into the link between whale communication and behavior
Published Bioelectronic mesh capable of growing with cardiac tissues for comprehensive heart monitoring



A team of engineers has recently built a tissue-like bioelectronic mesh system integrated with an array of atom-thin graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart's mechanical and electrical functions change during the developmental process. The new device is a boon for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.