Showing 20 articles starting at article 1601
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: General
Published 3D battery imaging reveals the secret real-time life of lithium metal cells
(via sciencedaily.com) 
Innovative battery researchers have cracked the code to creating real-time 3D images of the promising but temperamental lithium metal battery as it cycles. A team has succeeded in observing how the lithium metal in the cell behaves as it charges and discharges. The new method may contribute to batteries with higher capacity and increased safety in our future cars and devices.
Published Hitting nuclei with light may create fluid primordial matter
(via sciencedaily.com) 
A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published New kind of transistor could shrink communications devices on smartphones
(via sciencedaily.com) 
One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published A surprising way to trap a microparticle
(via sciencedaily.com) 
New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it
(via sciencedaily.com) 
A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Long-term exposure to nitrate in drinking water may be a risk factor for prostate cancer
(via sciencedaily.com) 
The nitrate ingested over the course of a person's adult lifetime through the consumption of tap water and bottled water could be a risk factor for prostate cancer, particularly in the case of aggressive tumors and in younger men.
Published Viable superconducting material created, say researchers
(via sciencedaily.com) 
Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published Smoke particles from wildfires can erode the ozone layer
(via sciencedaily.com) 
A new study finds that smoke particles in the stratosphere can trigger chemical reactions that erode the ozone layer -- and that smoke particles from Australian wildfires widened the ozone hole by 10 percent in 2020.
Published Study examines potential use of machine learning for sustainable development of biomass
(via sciencedaily.com)
Original source 
Machine learning can be valuable in supporting sustainable development of biomass if it is applied across the entire lifecyle of biomass and biomass-derived products, according to a new study.
Published Gas monitoring at volcanic fields outside Naples, Italy, exposes multiple sources of carbon dioxide emissions
(via sciencedaily.com) 
The Phlegraean volcanic fields just west of Naples, Italy, are among the top eight emitters of volcanic carbon dioxide in the world. Since 2005, the Solfatara crater -- one of many circular depressions in the landscape left by a long history of eruptions --has been emitting increased volumes of gas. Today it emits 4,000-5,000 tons of carbon dioxide each day, equivalent to the emissions from burning ~500,000 gallons of gasoline. Researchers estimate that as much as 20%--40% of the current carbon dioxide emissions are from the dissolution of calcite in the rocks, while 60%--80% is from underground magma.
Published Elegantly modeling Earth's abrupt glacial transitions
(via sciencedaily.com)
Original source 
Milutin Milankovitch hypothesized that the timing of glacial transitions has been controlled by the orbital parameters of the Earth, which suggests that there may be some predictability in the climate, a notoriously complex system. Now researchers propose a new paradigm to simplify the verification of the Milankovitch hypothesis. The new 'deterministic excitation paradigm' combines the physics concepts of relaxation oscillation and excitability to link Earth's orbital parameters and the glacial cycles in a more generic way.
Published Graphene quantum dots show promise as novel magnetic field sensors
(via sciencedaily.com) 
Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze
(via sciencedaily.com) 
Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits
(via sciencedaily.com) 
Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published Destroying the superconductivity in a kagome metal
(via sciencedaily.com) 
A recent study has uncovered a distinct disorder-driven superconductor-insulator transition. This first electric control of superconductivity and quantum Hall effect in a candidate material for future low-energy electronics has promise to reduce the rising, unsustainable energy cost of computing.
Published Ice-cold electron beams for ultra-compact X-ray lasers
(via sciencedaily.com)
Original source 
Ice-cold electron beams could pave the way to reducing X-ray free-electron lasers (X-FELs) to a fraction of their current size.
Published Quantum chemistry: Molecules caught tunneling
(via sciencedaily.com) 
Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published A motion freezer for many particles
(via sciencedaily.com) 
From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.
Published Clear sign that quark-gluon plasma production 'turns off' at low energy
(via sciencedaily.com) 
Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.
Published New material may offer key to solving quantum computing issue
(via sciencedaily.com) 
A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.