Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Physics: General
Published Researchers develop clever algorithm to improve our understanding of particle beams in accelerators
(via sciencedaily.com)
Original source 
Whenever SLAC National Accelerator Laboratory's linear accelerator is on, packs of around a billion electrons each travel together at nearly the speed of light through metal piping. These electron bunches form the accelerator's particle beam, which is used to study the atomic behavior of molecules, novel materials and many other subjects. But trying to estimate what a particle beam actually looks like as it travels through an accelerator is difficult, leaving scientists often with only a rough approximation of how a beam will behave during an experiment. Now, researchers have developed an algorithm that more precisely predicts a beam's distribution of particle positions and velocities as it zips through an accelerator.
Published Tunneling electrons
(via sciencedaily.com)
Original source 
By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Nifty nanoparticles help 'peel back the curtain' into the world of super small things
(via sciencedaily.com)
Original source 
Physicists are using nanoparticles to develop new sources of light that will allow us to 'peel back the curtain' into the world of extremely small objects -- thousands of times smaller than a human hair -- with major gains for medical and other technologies.
Published Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons
(via sciencedaily.com)
Original source 
A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
Published Scientists have full state of a quantum liquid down cold
(via sciencedaily.com)
Original source 
A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published New programmable smart fabric responds to temperature and electricity
(via sciencedaily.com)
Original source 
A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Better superconductors with palladium
(via sciencedaily.com)
Original source 
A new age of superconductors may be about to beginn: In the 1980s, many superconducting materials (called cuprates) were based on copper. Then, nickelates were discovered -- a new kind of superconducting materials based on nickel. But now, scientists from Austria and Japan have shown: There is a 'Goldilocks zone' of superconductivity which can neither be reached with cuprates nor with nickelates. Instead, palladium-based materials ('palladates') could be the solution.
Published Putting hydrogen on solid ground: Simulations with a machine learning model predict a new phase of solid hydrogen
(via sciencedaily.com)
Original source 
Hydrogen, the most abundant element in the universe, is found everywhere from the dust filling most of outer space to the cores of stars to many substances here on Earth. This would be reason enough to study hydrogen, but its individual atoms are also the simplest of any element with just one proton and one electron.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate
(via sciencedaily.com)
Original source 
The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Two qudits fully entangled
(via sciencedaily.com)
Original source 
Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.
Published Quantum computer applied to chemistry
(via sciencedaily.com)
Original source 
There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory
(via sciencedaily.com)
Original source 
In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers
(via sciencedaily.com)
Original source 
In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories
(via sciencedaily.com)
Original source 
Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations
(via sciencedaily.com)
Original source 
A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Physicists find unusual waves in nickel-based magnet
(via sciencedaily.com)
Original source 
Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Even as temperatures rise, this hydrogel material keeps absorbing moisture
(via sciencedaily.com)
Original source 
Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.
Published Tiny biobattery with 100-year shelf life runs on bacteria
(via sciencedaily.com)
Original source 
A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency
(via sciencedaily.com)
Original source 
Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Quantum liquid becomes solid when heated
(via sciencedaily.com)
Original source 
Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.