Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Earth and Climate, Physics: Optics
Published Filming proteins in motion
(via sciencedaily.com) 
Proteins are the heavy-lifters of biochemistry. These beefy molecules act as building blocks, receptors, processors, couriers and catalysts. Naturally, scientists have devoted a lot of research to understanding and manipulating proteins.
Published Researchers control the degree of twist in nanostructured particles
(via sciencedaily.com) 
Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Neolithic ceramics reveal dairy processing from milk of multiple species
(via sciencedaily.com) 
A new study has found evidence of cheesemaking, using milk from multiple animals in Late Neolithic Poland.
Published Humans are leaving behind a 'frozen signature' of microbes on Mount Everest
(via sciencedaily.com) 
Thanks to technological advances in microbial DNA analysis, researchers have discovered that mountaineers' boots aren't the only things leaving footprints on the world's tallest mountain. When someone sneezes on Everest, their germs can last for centuries.
Published Observations open door to improved luminous efficiency of organic LEDs
(via sciencedaily.com) 
Scientists succeeded in directly observing how LECs -- which are attracting attention as one of the post-organic LEDs -- change their electronic state over time during field emission by measuring their optical absorption via lamp light irradiation for the first time. This research method can be applied to all light-emitting devices, including not only LECs but also organic LEDs. This method is expected to reveal detailed electroluminescence processes and lead to the early detection of factors that reduce the efficiency of electroluminescence.
Published Scientists demonstrate time reflection of electromagnetic waves in a groundbreaking experiment
(via sciencedaily.com)
Original source 
Scientists have hypothesized for over six decades the possibility of observing a form of wave reflections known as temporal, or time, reflections. Researchers detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.
Published High-speed super-resolution microscopy via temporal compression
(via sciencedaily.com) 
Recently, a research team resolved the contradiction between spatial resolution and imaging speed in optical microscopy. They achieved high-speed super-resolution by developing an effective technique termed temporal compressive super-resolution microscopy (TCSRM). TCSRM merges enhanced temporal compressive microscopy with deep-learning-based super-resolution image reconstruction. Enhanced temporal compressive microscopy improves the imaging speed by reconstructing multiple images from one compressed image, and the deep-learning-based image reconstruction achieves the super-resolution effect without reduction in imaging speed. Their iterative image reconstruction algorithm contains motion estimation, merging estimation, scene correction, and super-resolution processing to extract the super-resolution image sequence from compressed and reference measurements.
Published Remarkable squirting mussels captured on film
(via sciencedaily.com) 
Researchers have observed a highly unusual behavior in the endangered freshwater mussel, Unio crassus. The jets disturb the river surface and attract fish. Mussel larvae in the jets can then attach to the gills of the fish and complete their metamorphosis into adults.
Published Researchers find access to new fluorescent materials
(via sciencedaily.com) 
Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.
Published Hotter than infinity: Light pulses can behave like an exotic gas
(via sciencedaily.com) 
In our modern society huge amounts of data are transmitted every day, mainly as short optical pulses propagating through glass fibers. With the steadily increasing density of such optical signals, their interaction grows, which can lead to data loss. Physicists are now investigating how to control large numbers of optical pulses as precisely as possible to reduce the effect of such interactions. To this end they have monitored an ensemble of optical pulses as they propagated through an optical fiber and have found that it follows fixed rules -- albeit mainly those of thermodynamics.
Published Island-inhabiting giants, dwarfs more vulnerable to extinction
(via sciencedaily.com) 
Island-dwelling mammal species often expand or contract in size, becoming giant or dwarf versions of their mainland counterparts. A new Science study from a global team shows that those giants and dwarfs have faced extreme risk of extinction -- an existential threat exacerbated by the arrival of humans.
Published Ringing an electronic wave: Elusive massive phason observed in a charge density wave
(via sciencedaily.com) 
Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.
Published Colloids get creative to pave the way for next generation photonics
(via sciencedaily.com) 
Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.
Published In the world's smallest ball game, scientists throw and catch single atoms using light
(via sciencedaily.com) 
Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers unveil smart contact lens, capable of implementing AR-based navigation
(via sciencedaily.com) 
A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.
Published What 'Chornobyl dogs' can tell us about survival in contaminated environments
(via sciencedaily.com) 
In the first step toward understanding how dogs -- and perhaps humans -- might adapt to intense environmental pressures such as exposure to radiation, heavy metals, or toxic chemicals, researchers found that two groups of dogs living within the Chernobyl Exclusion Zone showed significant genetic differences between them. The results indicate that these are two distinct populations that rarely interbreed. While earlier studies focused on the effects of the Chernobyl Nuclear Power Plant disaster on various species of wildlife, this is the first investigation into the genetic structure of stray dogs living near the Chernobyl nuclear power plant.
Published A pool at Yellowstone is a thumping thermometer
(via sciencedaily.com) 
Doublet Pool's regular thumping is more than just an interesting tourist attraction. A new study shows that the interval between episodes of thumping reflects the amount of energy heating the pool at the bottom, as well as in indication of how much heat is being lost through the surface. Doublet Pool, the authors found, is Yellowstone's thumping thermometer.
Published Enhancing at-home COVID tests with glow-in-the dark materials
(via sciencedaily.com) 
Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.
Published Graphene quantum dots show promise as novel magnetic field sensors
(via sciencedaily.com) 
Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze
(via sciencedaily.com) 
Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.