Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Environmental: Wildfires, Physics: Optics

Return to the site home page

Physics: Optics
Published

High-speed super-resolution microscopy via temporal compression      (via sciencedaily.com) 

Recently, a research team resolved the contradiction between spatial resolution and imaging speed in optical microscopy. They achieved high-speed super-resolution by developing an effective technique termed temporal compressive super-resolution microscopy (TCSRM). TCSRM merges enhanced temporal compressive microscopy with deep-learning-based super-resolution image reconstruction. Enhanced temporal compressive microscopy improves the imaging speed by reconstructing multiple images from one compressed image, and the deep-learning-based image reconstruction achieves the super-resolution effect without reduction in imaging speed. Their iterative image reconstruction algorithm contains motion estimation, merging estimation, scene correction, and super-resolution processing to extract the super-resolution image sequence from compressed and reference measurements.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Researchers find access to new fluorescent materials      (via sciencedaily.com) 

Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.

Physics: Optics
Published

Hotter than infinity: Light pulses can behave like an exotic gas      (via sciencedaily.com) 

In our modern society huge amounts of data are transmitted every day, mainly as short optical pulses propagating through glass fibers. With the steadily increasing density of such optical signals, their interaction grows, which can lead to data loss. Physicists are now investigating how to control large numbers of optical pulses as precisely as possible to reduce the effect of such interactions. To this end they have monitored an ensemble of optical pulses as they propagated through an optical fiber and have found that it follows fixed rules -- albeit mainly those of thermodynamics.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Ringing an electronic wave: Elusive massive phason observed in a charge density wave      (via sciencedaily.com) 

Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Colloids get creative to pave the way for next generation photonics      (via sciencedaily.com) 

Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Environmental: Wildfires Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Smoke particles from wildfires can erode the ozone layer      (via sciencedaily.com) 

A new study finds that smoke particles in the stratosphere can trigger chemical reactions that erode the ozone layer -- and that smoke particles from Australian wildfires widened the ozone hole by 10 percent in 2020.

Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: Wildfires Geoscience: Environmental Issues
Published

To help dry forests, fire needs to be just the right intensity, and happen more than once      (via sciencedaily.com) 

Research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect -- unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn't very good at helping forest landscapes return to their historical, more fire-tolerant conditions.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Enhancing at-home COVID tests with glow-in-the dark materials      (via sciencedaily.com) 

Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.

Engineering: Nanotechnology Physics: Optics
Published

Bending 2D nanomaterial could 'switch on' future technologies      (via sciencedaily.com) 

Materials scientists have uncovered a property of ferroelectric 2D materials that could be exploited in future devices.

Chemistry: Inorganic Chemistry Physics: Optics
Published

The positive outlooks of studying negatively-charged chiral molecules      (via sciencedaily.com) 

The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.

Environmental: Ecosystems Environmental: Wildfires
Published

Wildfires in 2021 emitted a record-breaking amount of carbon dioxide      (via sciencedaily.com) 

Carbon dioxide emissions from wildfires, which have been gradually increasing since 2000, spiked drastically to a record high in 2021, according to an international team of researchers.

Mathematics: Puzzles Physics: Optics
Published

Scholars unify color systems using prime numbers      (via sciencedaily.com) 

Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: Optics
Published

Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films      (via sciencedaily.com) 

Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

A motion freezer for many particles      (via sciencedaily.com) 

From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.

Environmental: Wildfires Geoscience: Environmental Issues
Published

Experts demand fire safety policy change over health impact of widely used flame retardants      (via sciencedaily.com) 

Leading environmental health experts have called for a comprehensive review of the UK's fire safety regulations, with a focus on the environmental and health risks of current chemical flame retardants.

Computer Science: Artificial Intelligence (AI) Engineering: Nanotechnology Engineering: Robotics Research Offbeat: Computers and Math Offbeat: Plants and Animals Physics: Optics
Published

Tiny new climbing robot was inspired by geckos and inchworms      (via sciencedaily.com) 

A tiny robot that could one day help doctors perform surgery was inspired by the incredible gripping ability of geckos and the efficient locomotion of inchworms.

Physics: Acoustics and Ultrasound Physics: Optics
Published

Faster and sharper whole-body imaging of small animals with deep learning      (via sciencedaily.com) 

A research team presents technology that enhances photoacoustic computed tomography using a deep-learning approach.