Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Environmental: Wildfires, Physics: Optics
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup
(via sciencedaily.com)
Original source 
Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published Gentle defibrillation for the heart
(via sciencedaily.com)
Original source 
Using light pulses as a model for electrical defibrillation, scientists developed a method to assess and modulate the heart function. The research team has thus paved the way for an efficient and direct treatment for cardiac arrhythmias. This may be an alternative for the strong and painful electrical shocks currently used.
Published Unlocking spin current secrets: A new milestone in spintronics
(via sciencedaily.com)
Original source 
Using neutron scattering and voltage measurements, a group of researchers have discovered that a material's magnetic properties can predict spin current changes with temperature. The finding is a major breakthrough in the field of spintronics.
Published Perfecting the view on a crystal's imperfection
(via sciencedaily.com)
Original source 
Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published Switching off the light to see better
(via sciencedaily.com)
Original source 
Researchers used structured light and switchable fluorescent molecules to reduce the background light from the out-of-plane regions of microscope samples. This method allowed for the acquisition of images that surpassed the conventional resolution limit, and it may be useful for further study of cell clusters and other biological systems.
Published 2D materials rotate light polarization
(via sciencedaily.com)
Original source 
Physicists have shown that ultra-thin two-dimensional materials such as tungsten diselenide can rotate the polarization of visible light by several degrees at certain wavelengths under small magnetic fields suitable for use on chips.
Published Superradiant atoms could push the boundaries of how precisely time can be measured
(via sciencedaily.com)
Original source 
Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers present a new method for measuring the time interval, the second, mitigating some of the limitations that today's most advanced atomic clocks encounter. The result could have broad implications in areas such as space travel, volcanic eruptions and GPS systems.
Published Compact quantum light processing
(via sciencedaily.com)
Original source 
An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.
Published Energy scientists unravel the mystery of gold's glow
(via sciencedaily.com)
Original source 
EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published A better view with new mid-infrared nanoscopy
(via sciencedaily.com)
Original source 
A team has constructed an improved mid-infrared microscope, enabling them to see the structures inside living bacteria at the nanometer scale. Mid-infrared microscopy is typically limited by its low resolution, especially when compared to other microscopy techniques. This latest development produced images at 120 nanometers, which the researchers say is a thirtyfold improvement on the resolution of typical mid-infrared microscopes. Being able to view samples more clearly at this smaller scale can aid multiple fields of research, including into infectious diseases, and opens the way for developing even more accurate mid-infrared-based imaging in the future.
Published Unique field study shows how climate change affects fire-impacted forests
(via sciencedaily.com)
Original source 
During the unusually dry year of 2018, Sweden was hit by numerous forest fires. A research team has investigated how climate change affects recently burnt boreal forests and their ability to absorb carbon dioxide.
Published Researchers shine light on rapid changes in Arctic and boreal ecosystems
(via sciencedaily.com)
Original source 
Arctic and boreal latitudes are warming faster than any other region on Earth.
Published CO2 worsens wildfires by helping plants grow
(via sciencedaily.com)
Original source 
By fueling the growth of plants that become kindling, carbon dioxide is driving an increase in the severity and frequency of wildfires, according to a new study.
Published Fires pose growing worldwide threat to wildland-urban interface
(via sciencedaily.com)
Original source 
Fires that devastate wildland-urban interface areas are becoming more common around the globe, a trend that is likely to continue for at least the next two decades, new research finds. Such fires are especially dangerous, both because they imperil large numbers of people and because they emit far more toxins than forest and grassland fires.
Published Photonic computation with sound waves
(via sciencedaily.com)
Original source 
Optical neural networks may provide the high-speed and large-capacity solution necessary to tackle challenging computing tasks. However, tapping their full potential will require further advances. One challenge is the reconfigurability of optical neural networks. A research team has now succeeded in laying the foundation for new reconfigurable neuromorphic building blocks by adding a new dimension to photonic machine learning: sound waves. The researchers use light to create temporary acoustic waves in an optical fiber. The sound waves generated in this way can for instance enable a recurrent functionality in a telecom optical fiber, which is essential to interpreting contextual information such as language.
Published Quantum electronics: Charge travels like light in bilayer graphene
(via sciencedaily.com)
Original source 
An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.
Published Crucial connection for 'quantum internet' made for the first time
(via sciencedaily.com)
Original source 
Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.
Published New colorful plastic films for versatile sensors and electronic displays
(via sciencedaily.com)
Original source 
Researchers have synthesized triarylborane (TAB) compounds that exhibit unusual optical responses upon binding to certain anions. They also synthesized thin polymer films that incorporate the TAB and retain the sensing as well as the light emission properties of the TAB. This work is an important advance in plastic research and has applications in analyte sensing as well as electronic display technologies.
Published Quantum breakthrough when light makes materials magnetic
(via sciencedaily.com)
Original source 
The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.
Published Breakthrough for next-generation digital displays
(via sciencedaily.com)
Original source 
Researchers have developed a digital display screen where the LEDs themselves react to touch, light, fingerprints and the user's pulse, among other things. Their results could be the start of a whole new generation of displays for phones, computers and tablets.