Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Physics: Optics
Published Keeping time with an atomic nucleus
(via sciencedaily.com)
Original source 
Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.
Published Quantum matter breakthrough: Tuning density waves
(via sciencedaily.com)
Original source 
Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Breakthrough in computer chip energy efficiency could cut data center electricity use
(via sciencedaily.com)
Original source 
Researchers have made a breakthrough toward reducing the energy consumption of the photonic chips used in data centers and supercomputers.
Published Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials
(via sciencedaily.com)
Original source 
In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.
Published Uncovering universal physics in the dynamics of a quantum system
(via sciencedaily.com)
Original source 
New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.
Published Curved spacetime in a quantum simulator
(via sciencedaily.com)
Original source 
The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published New priming method improves battery life, efficiency
(via sciencedaily.com)
Original source 
Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.
Published With new experimental method, researchers probe spin structure in 2D materials for first time
(via sciencedaily.com)
Original source 
In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
Published Quantum electrodynamics verified with exotic atoms
(via sciencedaily.com)
Original source 
Adapting a detector developed for space X-ray observation, researchers have successfully verify strong-field quantum electrodynamics with exotic atoms.
Published Unlocking the power of photosynthesis for clean energy production
(via sciencedaily.com)
Original source 
Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published 'Super-resolution' imaging technology
(via sciencedaily.com)
Original source 
Researchers describe developing a super-resolution imaging platform technology to improve understanding of how nanoparticles interact within cells.
Published Scintillating science: Researchers improve materials for radiation detection and imaging technology
(via sciencedaily.com)
Original source 
A team of researchers has improved a new generation of organic-inorganic hybrid materials that can improve image quality in X-ray machines, CT scans and other radiation detection and imaging technologies.
Published Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems
(via sciencedaily.com)
Original source 
Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.
Published Symmetric graphene quantum dots for future qubits
(via sciencedaily.com)
Original source 
Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.
Published Exciton fission: One photon in, two electrons out
(via sciencedaily.com)
Original source 
Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.
Published Scientists capture elusive chemical reaction using enhanced X-ray method
(via sciencedaily.com)
Original source 
Researchers have captured one of the fastest movements of a molecule called ferricyanide for the first time by combining two ultrafast X-ray spectroscopy techniques. They think their approach could help map more complex chemical reactions like oxygen transportation in blood cells or hydrogen production using artificial photosynthesis.
Published Quantum lidar prototype acquires real-time 3D images while fully submerged underwater
(via sciencedaily.com)
Original source 
Researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.
Published Researchers detect and classify multiple objects without images
(via sciencedaily.com)
Original source 
Researchers have developed a new high-speed way to detect the location, size and category of multiple objects without acquiring images or requiring complex scene reconstruction. Because the new approach greatly decreases the computing power necessary for object detection, it could be useful for identifying hazards while driving.
Published Quantum entanglement of photons doubles microscope resolution
(via sciencedaily.com)
Original source 
Using a "spooky" phenomenon of quantum physics, researchers have discovered a way to double the resolution of light microscopes.
Published Tunneling electrons
(via sciencedaily.com)
Original source 
By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.