Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Physics: Optics

Return to the site home page

Chemistry: Biochemistry Physics: Optics
Published

Scientists learn how to control muscles with light      (via sciencedaily.com)     Original source 

Researchers developed a way to help people with amputation or paralysis regain limb control. Their optogenetic technique could offer more precise control over muscle contraction, along with a dramatic decrease in muscle fatigue.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Scientists develop new battery-free lactic acid sensor      (via sciencedaily.com)     Original source 

Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.

Energy: Technology Physics: Optics
Published

Streamlined microcomb design provides control with the flip of a switch      (via sciencedaily.com)     Original source 

Researchers describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Physics: Optics
Published

Innovative 3D printing could revolutionize treatment for cataracts and other eye conditions      (via sciencedaily.com)     Original source 

Rsearchers have developed the first 3D printable ocular resins, marking a significant breakthrough in manufacturing specialist lenses for implantation in the human eye.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ion irradiation offers promise for 2D material probing      (via sciencedaily.com)     Original source 

Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Physics: Optics
Published

Studying bubbles can lead to more efficient biofuel motors      (via sciencedaily.com)     Original source 

By studying how bubbles form in a drop of biodiesel, researchers can help future engines get the most energy out of the fuel.

Engineering: Nanotechnology Engineering: Robotics Research Physics: Optics
Published

Researchers use artificial intelligence to boost image quality of metalens camera      (via sciencedaily.com)     Original source 

Researchers have leveraged deep learning techniques to enhance the image quality of a metalens camera. The new approach uses artificial intelligence to turn low-quality images into high-quality ones, which could make these cameras viable for a multitude of imaging tasks including intricate microscopy applications and mobile devices.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simple quantum internet with significant possibilities      (via sciencedaily.com)     Original source 

It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.

Biology: Cell Biology Physics: Optics
Published

Bio-based resins could offer recyclable future for 3D printing      (via sciencedaily.com)     Original source 

A new type of recyclable resin, made from biosourced materials, has been designed for use in 3D printing applications.

Chemistry: General Energy: Technology Physics: Acoustics and Ultrasound Physics: Optics
Published

Metalens expands Its reach from light to sound      (via sciencedaily.com)     Original source 

Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Speedy, secure, sustainable -- that's the future of telecom      (via sciencedaily.com)     Original source 

A new device that can process information using a small amount of light could enable energy-efficient and secure communications.

Physics: General Physics: Optics
Published

Milestone in plasma acceleration      (via sciencedaily.com)     Original source 

Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.

Chemistry: Biochemistry Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Good vibrations: New tech may lead to smaller, more powerful wireless devices      (via sciencedaily.com)     Original source 

What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

2D all-organic perovskites: potential use in 2D electronics      (via sciencedaily.com)     Original source 

Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

Physics: Optics
Published

Researchers harness blurred light to 3D print high quality optical components      (via sciencedaily.com)     Original source 

Researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.