Showing 20 articles starting at article 781

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Physics: Quantum Physics

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

High-energy-density, long life-cycle rechargeable lithium metal batteries      (via sciencedaily.com) 

Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

New possibilities in the theoretical prediction of particle interactions      (via sciencedaily.com) 

A team of scientists finds a way to evaluate highly complex Feynman integrals.

Offbeat: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Ultrafast beam-steering breakthrough      (via sciencedaily.com) 

n a major breakthrough in the fields of nanophotonics and ultrafast optics, a research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

First detection of neutrinos made at a particle collider      (via sciencedaily.com) 

A team including physicists has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN's Large Hadron Collider (LHC). The discovery promises to deepen scientists' understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: Water Geoscience: Environmental Issues
Published

'Green' hydrogen: How photoelectrochemical water splitting may become competitive      (via sciencedaily.com) 

Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, most systems based on this 'direct approach' have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical 'green' hydrogen production can be reduced dramatically, the study shows.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists open door to manipulating 'quantum light'      (via sciencedaily.com) 

How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.

Computer Science: General Energy: Technology
Published

Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry      (via sciencedaily.com) 

Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Instrument adapted from astronomy observation helps capture singular quantum interference effects      (via sciencedaily.com) 

By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sculpting quantum materials for the electronics of the future      (via sciencedaily.com) 

The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

Displays with more brilliant colors through a fundamental physical concept      (via sciencedaily.com) 

New research has shown that a strong coupling of light and material increases the colour brilliance of OLED displays. This increase is independent of the viewing angle and does not affect energy efficiency.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.

Energy: Alternative Fuels Energy: Technology
Published

Minimizing electric vehicles' impact on the grid      (via sciencedaily.com) 

Some projections show that widespread adoption of electric vehicles might require costly new power plants to meet peak loads in the evening. A new study shows that placing EV charging stations strategic ways and setting up systems to initiate charging at delayed times could lessen or eliminate the need for new power plants.

Energy: Technology Environmental: General Geoscience: Environmental Issues Physics: Acoustics and Ultrasound
Published

Propeller advance paves way for quiet, efficient electric aviation      (via sciencedaily.com) 

Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.

Physics: General Physics: Quantum Physics
Published

STAR physicists track sequential 'melting' of upsilons      (via sciencedaily.com) 

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons sequentially 'melt,' or dissociate, in the hot goo.

Computer Science: Artificial Intelligence (AI) Computer Science: General Energy: Technology Engineering: Robotics Research
Published

Researchers develop soft robot that shifts from land to sea with ease      (via sciencedaily.com) 

Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.