Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Quantum Physics
Published Groundwork for future ultra-precise timing links to geosynchronous satellites
(via sciencedaily.com)
Original source 
Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.
Published Vastly more sustainable, cost-effective method to desalinate industrial wastewater
(via sciencedaily.com)
Original source 
Engineers are developing a cutting-edge process that can reduce energy consumption and cost of water desalination.
Published How tidal range electricity generation could meet future demand and storage problems
(via sciencedaily.com)
Original source 
Tidal range schemes are financially viable and could lower energy bills say researchers. Research combined a tidal range power generation model with its cost model to demonstrate the viability of tidal power. The research demonstrates the benefits of tidal energy, which does not suffer from unpredictable intermittency as power is generated both day and night, and in windy or calm weather. The creation of a tidal barrage could operate for 120 years or more to meet future demand and storage problems.
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water
(via sciencedaily.com)
Original source 
Researchers are exploring the different ways of harvesting materials from water.
Published Engineers develop a soft, printable, metal-free electrode
(via sciencedaily.com)
Original source 
Engineers developed a metal-free, Jelly-like material that is as soft and tough as biological tissue and can conduct electricity similarly to conventional metals. The new material, which is a type of high-performance conducting polymer hydrogel, may one day replace metals in the electrodes of medical devices.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device
(via sciencedaily.com)
Original source 
An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Metaverse could put a dent in global warming
(via sciencedaily.com)
Original source 
For many technology enthusiasts, the metaverse has the potential to transform almost every facet of human life, from work to education to entertainment. Now, new research shows it could have environmental benefits, too.
Published Photosynthesis, key to life on Earth, starts with a single photon
(via sciencedaily.com)
Original source 
A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery
(via sciencedaily.com)
Original source 
A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published Metamaterials with built-in frustration have mechanical memory
(via sciencedaily.com)
Original source 
Researchers have discovered how to design materials that necessarily have a point or line where the material doesn't deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.
Published New technique in error-prone quantum computing makes classical computers sweat
(via sciencedaily.com)
Original source 
Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published All-electric rideshare fleet could reduce carbon emissions, increase traffic issues
(via sciencedaily.com)
Original source 
Two major ridesharing companies have promised all-electric fleets by 2030 in an effort to reduce their carbon footprint. To understand additional impacts of this transition, researchers conducted life-cycle comparisons of battery-powered electric vehicle fleets to a gas-powered one, using real-world rideshare data. They found up to a 45% reduction in greenhouse gas emissions from full electrification; however, traffic problems and air pollution could increase.
Published Novel ferroelectrics for more efficient microelectronics
(via sciencedaily.com)
Original source 
A team of researchers is exploring novel materials that have potential to make microelectronics more energy efficient. Their recent work explores recently discovered wurtzite ferroelectrics, which are mainly composed of materials that are already incorporated in semiconductor technology for integrated circuits. These materials allow for the integration of new power-efficient devices for applications such as non-volatile memory, electro-optics, and energy harvesting.
Published Megawatt electrical motor designed by engineers could help electrify aviation
(via sciencedaily.com)
Original source 
Aerospace engineers designed a 1-megawatt electrical motor that is a stepping stone toward electrifying the largest aircraft.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones
(via sciencedaily.com)
Original source 
Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Schrödinger's cat makes better qubits
(via sciencedaily.com)
Original source 
Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Physicists discover an exotic material made of bosons
(via sciencedaily.com)
Original source 
Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.
Published Calculation shows why heavy quarks get caught up in the flow
(via sciencedaily.com)
Original source 
Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence
(via sciencedaily.com)
Original source 
A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light
(via sciencedaily.com)
Original source 
Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.