Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Quantum Physics
Published Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution
(via sciencedaily.com)
Original source 
Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing
(via sciencedaily.com)
Original source 
Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Two million European households could abandon the electrical grid by 2050
(via sciencedaily.com)
Original source 
Researchers report that 53% of European freestanding homes could have supplied all their own energy needs in 2020 using only local rooftop solar radiation, and this technical feasibility could increase to 75% in 2050. The study shows that there is no economic advantage for individual households to be fully self-sufficient under current or future conditions, though in some cases the costs are on par with remaining on-grid. The researchers estimate that self-sufficiency will be economically feasible for 5% (two million) of Europe's 41 million freestanding single-family homes in 2050, if households are willing to pay up to 50% more than the cost of remaining fully grid dependent.
Published Efficient biohybrid batteries
(via sciencedaily.com)
Original source 
Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers
(via sciencedaily.com)
Original source 
Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published Wireless device makes magnetism appear in non-magnetic materials
(via sciencedaily.com)
Original source 
Researchers have succeeded in bringing wireless technology to the fundamental level of magnetic devices. The emergence and control of magnetic properties in cobalt nitride layers (initially non-magnetic) by voltage, without connecting the sample to electrical wiring, represents a paradigm shift that can facilitate the creation of magnetic nanorobots for biomedicine and computing systems where basic information management processes do not require wiring.
Published New battery technology could lead to safer, high-energy electric vehicles
(via sciencedaily.com)
Original source 
Researchers studying how lithium batteries fail have developed a new technology that could enable next-generation electric vehicles (EVs) and other devices that are less prone to battery fires while increasing energy storage.
Published Controlling waves in magnets with superconductors for the first time
(via sciencedaily.com)
Original source 
Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published A superatomic semiconductor sets a speed record
(via sciencedaily.com)
Original source 
The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4
(via sciencedaily.com)
Original source 
The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Major milestone achieved in new quantum computing architecture
(via sciencedaily.com)
Original source 
Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published Physicists simulate interacting quasiparticles in ultracold quantum gas
(via sciencedaily.com)
Original source 
In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.
Published DNA Origami nanoturbine sets new horizon for nanomotors
(via sciencedaily.com)
Original source 
Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.
Published Using sound to test devices, control qubits
(via sciencedaily.com)
Original source 
Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Bitcoin mining has 'very worrying' impacts on land and water, not only carbon
(via sciencedaily.com)
Original source 
As bitcoin and other cryptocurrencies have grown in market share, they've been criticized for their heavy carbon footprint: Cryptocurrency mining is an energy-intensive endeavor. Mining has massive water and land footprints as well, according to a new study that is the first to detail country-by-country environmental impacts of bitcoin mining.
Published Scientists develop new method to create stable, efficient next-gen solar cells
(via sciencedaily.com)
Original source 
Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.
Published How quantum light 'sees' quantum sound
(via sciencedaily.com)
Original source 
Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Unexpected behavior discovered in active particles
(via sciencedaily.com)
Original source 
Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Accelerating waves shed light on major problems in physics
(via sciencedaily.com)
Original source 
Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices
(via sciencedaily.com)
Original source 
Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.