Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Engineering: Nanotechnology
Published Transforming highways for high-speed travel and energy transport
(via sciencedaily.com)
Original source 
Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers
(via sciencedaily.com)
Original source 
Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Nanowire networks learn and remember like a human brain
(via sciencedaily.com)
Original source 
Scientists have demonstrated nanowire networks can exhibit both short- and long-term memory like the human brain.
Published Reinforcement learning: From board games to protein design
(via sciencedaily.com)
Original source 
An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published One-step solution-coating method to advance perovskite solar cell manufacturing and commercialization
(via sciencedaily.com)
Original source 
Perovskite solar cells (PSCs) are considered a promising candidate for next-generation photovoltaic technology with high efficiency and low production cost, potentially revolutionizing the renewable energy industry. However, the existing layer-by-layer manufacturing process presents challenges that have hindered the commercialization of this technology. Recently, researchers have developed an innovative one-step solution-coating approach that simplifies the manufacturing process and lowers the commercialization barriers for PSCs.
Published Stab-resistant fabric gains strength from carbon nanotubes, polyacrylate
(via sciencedaily.com)
Original source 
Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation
(via sciencedaily.com)
Original source 
Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Novel nanocages for delivery of small interfering RNAs
(via sciencedaily.com)
Original source 
Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published Using machine learning to find reliable and low-cost solar cells
(via sciencedaily.com)
Original source 
Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published Tiny biobattery with 100-year shelf life runs on bacteria
(via sciencedaily.com)
Original source 
A tiny biobattery that could still work after 100 years has been developed.
Published Next decade decisive for PV growth on the path to 2050
(via sciencedaily.com)
Original source 
Global experts on solar power strongly urge a commitment to the continued growth of photovoltaic (PV) manufacturing and deployment to power the planet, arguing that lowballing projections for PV growth while waiting for a consensus on other energy pathways or the emergence of technological last-minute miracles 'is no longer an option.'
Published Chemists propose ultrathin material for doubling solar cell efficiency
(via sciencedaily.com)
Original source 
Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Physicists discover transformable nano-scale electronic devices
(via sciencedaily.com)
Original source 
The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published A novel platinum nanocluster for improved oxygen reduction reaction in fuel cells
(via sciencedaily.com)
Original source 
Hydrogen, derived from polymer electrolyte fuel cells (PEFCs), is an excellent source of clean energy. However, PEFCs require platinum (Pt), which is a limited resource. Some studies have shown that Pt nanoclusters (NCs) have higher activity than conventionally used Pt nanoparticles, however the origin of their higher activity is unclear. Now, researchers have synthesized a novel Pt NC catalyst with unprecedented activity and identified the reason for its high performance.
Published A solar hydrogen system that co-generates heat and oxygen
(via sciencedaily.com)
Original source 
Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Microwaves advance solar-cell production and recycling
(via sciencedaily.com)
Original source 
New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Processing data at the speed of light
(via sciencedaily.com)
Original source 
Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Gentle method allows for eco-friendly recycling of solar cells
(via sciencedaily.com)
Original source 
By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Scientists create high-efficiency sustainable solar cells for IoT devices with AI-powered energy management
(via sciencedaily.com)
Original source 
Researchers have created environmentally-friendly, high-efficiency photovoltaic cells that harness ambient light to power internet of Things (IoT) devices.
Published Implantable device shrinks pancreatic tumors
(via sciencedaily.com)
Original source 
Nanomedicine researchers have found a way to tame pancreatic cancer -- one of the most aggressive and difficult to treat cancers -- by delivering immunotherapy directly into the tumor with a device that is smaller than a grain of rice.