Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Engineering: Nanotechnology
Published New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs
(via sciencedaily.com) 
The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.
Published Study observes sudden acceleration of flow, generates new boundary layer
(via sciencedaily.com) 
In an experiment on how turbulent boundary layers respond to acceleration in the flow around them, aerospace engineers at the observed an unexpected internal boundary layer.
Published Stabilizing precipitate growth at grain boundaries in alloys
(via sciencedaily.com) 
Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.
Published To improve solar and other clean energy tech, look beyond hardware
(via sciencedaily.com) 
A new analysis reveals that soft technology, the processes to design and deploy a solar energy system, contributed far less to the total cost declines of solar installations than previously estimated. Their quantitative model shows that driving down solar energy costs in the future will likely require either improving soft technology or reducing system dependencies on soft technology features.
Published Cleaning water with 'smart rust' and magnets
(via sciencedaily.com) 
Pouring flecks of rust into water usually makes it dirtier. But researchers have developed special iron oxide nanoparticles called 'smart rust' that actually makes it cleaner. The magnetic nanoparticles attract different pollutants by changing the particles' coating and are removed from water with a magnet. Now, the team is reporting a smart rust that traps estrogen hormones, which are potentially harmful to aquatic life.
Published Decoding how molecules 'talk' to each other to develop new nanotechnologies
(via sciencedaily.com) 
Scientists recreate and compare molecular languages at the origin of life -- opening new doors for the development of novel nanotechnologies.
Published Carbon-based quantum technology
(via sciencedaily.com) 
Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Gold buckyballs, oft-used nanoparticle 'seeds' are one and the same
(via sciencedaily.com) 
Chemists have discovered that tiny gold 'seed' particles, a key ingredient in one of the most common nanoparticle recipes, are one and the same as gold buckyballs, 32-atom spheres that are cousins of the Nobel Prize-winning carbon buckyballs discovered in 1985.
Published Nanoscale material offers new way to control fire
(via sciencedaily.com) 
High-temperature flames are used to create a wide variety of materials -- but once you start a fire, it can be difficult to control how the flame interacts with the material you are trying to process. Researchers have now developed a technique that utilizes a molecule-thin protective layer to control how the flame's heat interacts with the material -- taming the fire and allowing users to finely tune the characteristics of the processed material.
Published Chromium replaces rare and expensive noble metals
(via sciencedaily.com)
Original source 
Expensive noble metals often play a vital role in illuminating screens or converting solar energy into fuels. Now, chemists have succeeded in replacing these rare elements with a significantly cheaper metal. In terms of their properties, the new materials are very similar to those used in the past.
Published Arrays of quantum rods could enhance TVs or virtual reality devices
(via sciencedaily.com) 
Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Tattoo technique transfers gold nanopatterns onto live cells
(via sciencedaily.com) 
For now, cyborgs exist only in fiction, but the concept is becoming more plausible as science progresses. And now, researchers are reporting that they have developed a proof-of-concept technique to 'tattoo' living cells and tissues with flexible arrays of gold nanodots and nanowires. With further refinement, this method could eventually be used to integrate smart devices with living tissue for biomedical applications, such as bionics and biosensing.
Published AuNi alloy on Au electrodes for hydrogen evolution reaction: Towards a cleaner tomorrow
(via sciencedaily.com)
Original source 
Gold (Au)-based electrocatalysts used for hydrogen production via water electrolysis exhibit high chemical stability but low hydrogen evolution reaction (HER) activity. Alloying them with nickel (Ni) can improve their HER activity. A recent study investigated the HER activity and surface properties of AuNi alloy prepared on single crystal Au surfaces, revealing the atomic structural changes and surface sites responsible for enhanced HER activity of AuNi/Au catalyst during electrolysis.
Published Quantum material exhibits 'non-local' behavior that mimics brain function
(via sciencedaily.com) 
New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Discovery in nanomachines within living organisms -- cytochromes P450 (CYP450s) unleashed as living soft robots
(via sciencedaily.com)
Original source 
A new study suggests that Cytochromes P450 (CYP450s) enzymes can sense and respond to stimuli, acting like soft robots in living systems.
Published Single drop of ethanol to revolutionize nanosensor manufacture
(via sciencedaily.com) 
Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.
Published New photocatalytic system converts carbon dioxide to valuable fuel more efficiently than natural photosynthesis
(via sciencedaily.com) 
A research team recently developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, a valuable fuel, very efficiently using light. This is a promising discovery, which could contribute to the goal of carbon neutrality.
Published Unleashing a new era of color tunable nano-devices -- smallest ever light source with switchable colors formed
(via sciencedaily.com) 
New research has achieved a significant breakthrough in color switching for nanocrystals, unlocking exciting possibilities for a simple, energy efficient display design and for tunable light sources needed in numerous technologies. The discovery also has potential applications in sensitive sensors for various substances, including biological and neuroscience uses, as well as advancements in quantum communication technologies. This nanomaterial breakthrough holds the promise of inspiring exciting innovations in the future.
Published Nanorings: New building blocks for chemistry
(via sciencedaily.com) 
Sandwich compounds are special chemical compounds used as basic building blocks in organometallic chemistry. So far, their structure has always been linear. Recently, researchers made stacked sandwich complexes form a nano-sized ring. Physical and other properties of these cyclocene structures will now be further investigated.
Published Cracking in lithium-ion batteries speeds up electric vehicle charging
(via sciencedaily.com) 
Rather than being solely detrimental, cracks in the positive electrode of lithium-ion batteries reduce battery charge time, research shows. This runs counter to the view of many electric vehicle manufacturers, who try to minimize cracking because it decreases battery longevity.