Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Engineering: Nanotechnology
Published Soft, ultrathin photonic material cools down wearable electronic devices
(via sciencedaily.com)
Original source 
Overheating of wearable skin-like electronic devices increases the risk of skin burning and results in performance degradation. A research team has now invented a photonic material-based 'soft, ultrathin, radiative-cooling interface' that greatly enhances heat dissipation in devices, with temperature drops more than 56°C, offering an alternative for effective thermal management in advanced wearable electronics.
Published 'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision
(via sciencedaily.com)
Original source 
Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.
Published Squid-inspired soft material is a switchable shield for light, heat, microwaves
(via sciencedaily.com)
Original source 
With a flick of a switch, current technologies allow you to quickly change materials from being dark to light, or cold to hot, just by blocking or transmitting specific wavelengths. But now, inspired by squid skin, researchers report a soft film that can regulate its transparency across a large range of wavelengths -- visible, infrared and microwave -- simultaneously. They demonstrated the material in smart windows and in health monitoring and temperature management applications.
Published Nanophotonics: Coupling light and matter
(via sciencedaily.com)
Original source 
Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Inside-out heating and ambient wind could make direct air capture cheaper and more efficient
(via sciencedaily.com)
Original source 
Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.
Published Cleaner air with a cold catalytic converter
(via sciencedaily.com)
Original source 
Although passenger vehicle catalytic converters have been mandatory for over 30 years, there is still plenty of room for improvement. For instance, they only work correctly when the engine is sufficiently hot, which is not always the case, especially with hybrid vehicles. Researchers have now developed an improved catalyst that can properly purify exhaust gases even at room temperature.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device
(via sciencedaily.com)
Original source 
An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Terahertz-to-visible light conversion for future telecommunications
(via sciencedaily.com)
Original source 
A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Nanomaterials: 3D printing of glass without sintering
(via sciencedaily.com)
Original source 
A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.
Published Researchers describe the melting of gold nanoparticles in gold-bearing fluids in the Earth's crust
(via sciencedaily.com)
Original source 
Gold is a precious metal that has always fascinated humans. From Priam's Treasure to the legend of El Dorado, gold --regarded as the noblest of metals-- has been a symbol of splendour and wealth in many civilizations. Historically, gold deposits were known to form when metal was transported dissolved by hot aqueous solution flows --hydrothermal fluids-- until it accumulated in some areas in the Earth's upper crust. The recent discovery of gold nanoparticles in such mineral deposits has brought some doubts on the validity of the classical model.
Published New material transforms light, creating new possibilities for sensors
(via sciencedaily.com)
Original source 
A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.
Published New method enables study of nano-sized particles
(via sciencedaily.com)
Original source 
Researchers have created a new method of studying the smallest bioparticles in the body. The study has considerable scientific potential, such as in the development of more effective vaccines.
Published Breaking through the limits of stretchable semiconductors with molecular brakes that harness light
(via sciencedaily.com)
Original source 
A research team develops a highly stretchable and high-performance organic polymer semiconductor.
Published Sustainable technique to manufacture chemicals
(via sciencedaily.com)
Original source 
A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.
Published Scientists use seaweed to create new material that can store heat for reuse
(via sciencedaily.com)
Original source 
Scientists have created a new material derived from seaweed that can store heat for re-use. It could be used to capture summer sun for use in winter, or to store heat from industry that currently goes up the chimney, potentially slashing carbon emissions. The material is in the form of small beads made from alginate, which is cheap, abundant and non-toxic. It stores heat four times more efficiently than a previous material the team had developed.
Published Heart valves made in minutes control blood flow immediately after being implanted into sheep
(via sciencedaily.com)
Original source 
Researchers have developed a method for cheaply producing heart valves in the span of minutes that are functional immediately after being implanted into sheep. The scientists call their method 'Focused Rotary Jet Spinning,' which they describe as 'a cotton-candy machine with a hair dryer behind it.' Though long-term in vivo studies are needed to test the valves' endurance, they effectively controlled blood flow for an hour in sheep.
Published 'Heat highways' could keep electronics cool
(via sciencedaily.com)
Original source 
As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.
Published Programmable 3D printed wound dressing could improve treatment for burn, cancer patients
(via sciencedaily.com)
Original source 
Researchers have created a new type of wound dressing material using advanced polymers. This new dressing could enhance the healing process for burn patients and have potential applications for drug delivery in cancer treatment as well as in the cosmetic industry.
Published The problems with coal ash start smaller than anyone thought
(via sciencedaily.com)
Original source 
Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.
Published Buckle up! A new class of materials is here
(via sciencedaily.com)
Original source 
Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.