Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Engineering: Nanotechnology
Published Spinning up control: Propeller shape helps direct nanoparticles
(via sciencedaily.com)
Original source 
Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.
Published In a new light -- new approach overcomes long-standing limitations in optics
(via sciencedaily.com)
Original source 
When you look up at the sky and see clouds of wondrous shapes, or struggle to peer through dense, hazy fog, you're seeing the results of 'Mie scattering', which is what happens with light interacts with particles of a certain size. There is a growing body of research that aims to manipulate this phenomenon and make possible an array of exciting technologies. Researchers have now developed a new means of manipulating Mie scattering from nanostructures.
Published Scientists 3D print self-heating microfluidic devices
(via sciencedaily.com)
Original source 
A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.
Published Permselectivity reveals a cool side of nanopores
(via sciencedaily.com)
Original source 
Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.
Published Chance twists ordered carbon nanotubes into 'tornado films'
(via sciencedaily.com)
Original source 
Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.
Published Polaritons open up a new lane on the semiconductor highway
(via sciencedaily.com)
Original source 
On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic
(via sciencedaily.com)
Original source 
Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published New implants linked to less infection and better recovery from orthopedic surgery
(via sciencedaily.com)
Original source 
Superior knee and hip replacements are a step closer after researchers further test and develop a new orthopedic implant coating which has the strong ability to ward off infection -- as well as stimulate bone growth. The technology consists of novel Silver-Gallium (Ag-Ga) nano-amalgamated particles that can be easily applied to medical device surfaces.
Published Boiled bubbles jump to carry more heat
(via sciencedaily.com)
Original source 
The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.
Published Breakthroughs in nanosized contrast agents and drug carriers through self-folding molecules
(via sciencedaily.com)
Original source 
Self-folding polymers containing gadolinium forming nanosized complexes could be the key to enhanced magnetic resonance imaging and next-generation drug delivery. Thanks to their small size, low toxicity, and good tumor accumulation and penetration, these complexes represent a leap forward in contrast agents for cancer diagnosis, as well as neutron capture radiotherapy.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions
(via sciencedaily.com)
Original source 
An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Photonic chip that 'fits together like Lego' opens door to semiconductor industry
(via sciencedaily.com)
Original source 
A new semiconductor architecture integrates traditional electronics with photonic, or light, components could have application in advanced radar, satellites, wireless networks and 6G telecommunications. And it provides a pathway for a local semiconductor industry.
Published Harvesting more solar energy with supercrystals
(via sciencedaily.com)
Original source 
Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales
(via sciencedaily.com)
Original source 
Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges
(via sciencedaily.com)
Original source 
A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Promising salt for heat storage
(via sciencedaily.com)
Original source 
Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?
Published Toward sustainable energy applications with breakthrough in proton conductors
(via sciencedaily.com)
Original source 
Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.
Published Gold now has a golden future in revolutionizing wearable devices
(via sciencedaily.com)
Original source 
Scientists have pioneered a novel approach to develop intelligent healthcare sensors using various gold nanowires.
Published New computer code for mechanics of tissues and cells in three dimensions
(via sciencedaily.com)
Original source 
Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published No one-size-fits-all solution for the net-zero grid
(via sciencedaily.com)
Original source 
As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network. The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.