Showing 20 articles starting at article 901
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Energy: Technology
Published Taking photoclick chemistry to the next level
(via sciencedaily.com) 
Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition
(via sciencedaily.com) 
Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published Direct formation of sulfuric acid in the atmosphere
(via sciencedaily.com) 
In the atmosphere, gaseous sulfuric acid can form particles that influence the physical properties of clouds. Thus, the formation of sulfuric acid in the gas phase directly affects the radiative forcing and Earth's climate. In addition to the known formation from sulfur dioxide, researchers have now been able to demonstrate through experiments that there is another formation pathway that has been speculated about for decades. Sulfuric acid in the atmosphere can also be formed directly by the oxidation of organic sulfur compounds. This new production pathway can be responsible for up to half of the gaseous sulfuric acid formation over the oceans and is thus of high importance for climate projections -- especially over the oceans of the Southern Hemisphere.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices
(via sciencedaily.com) 
Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox
(via sciencedaily.com) 
Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions
(via sciencedaily.com) 
An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells
(via sciencedaily.com)
Original source 
Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Enhanced chemical weathering: A solution to the climate crisis?
(via sciencedaily.com)
Original source 
Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published Researcher finds inspiration from spider webs and beetles to harvest fresh water from thin air
(via sciencedaily.com) 
A team of researchers is designing novel systems to capture water vapor in the air and turn it into liquid. They have developed sponges or membranes with a large surface area that continually capture moisture from their surrounding environment.
Published Math enables blending hydrogen in natural gas pipelines
(via sciencedaily.com) 
Mathematical modeling can show how to safely blend hydrogen with natural gas for transport in existing pipeline systems. A secure and reliable transition to hydrogen is one of the proposed solutions for the shift to a net-zero-carbon economy.
Published Scientists invent micrometers-thin battery charged by saline solution that could power smart contact lenses
(via sciencedaily.com) 
Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses.
Published New study finds ways to suppress lithium plating in automotive batteries for faster charging electric vehicles
(via sciencedaily.com) 
A new study has found a way to prevent lithium plating in electric vehicle batteries, which could lead to faster charging times.
Published Steam condenser coating could save 460M tons of CO2 annually
(via sciencedaily.com) 
If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published 'Topological gardening' to achieve unexpected spin transport
(via sciencedaily.com) 
'Trimming' the edge-states of a topological insulator yields a new class of material featuring unconventional 'two way' edge transport in a new theoretical study. The new material, a topological crystalline insulator (TCI) forms a promising addition to the family of topological materials and significantly broadens the scope of materials with topologically nontrivial properties, paving the way for novel techniques to manipulate edge transport in future electronics. For example, 'switching' the TCI via an electric field breaking the symmetry supporting the nontrivial band topology, thus suppressing the edge current.
Published New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs
(via sciencedaily.com) 
The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.
Published Move over lithium-ion: Zinc-air batteries a cheaper and safer alternative
(via sciencedaily.com) 
Zinc-air batteries have emerged as a better alternative to lithium in a recent study into the advancement of sustainable battery systems.
Published Groundbreaking green propane production method
(via sciencedaily.com) 
New research reveals a promising breakthrough in green energy: an electrolyzer device capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable.
Published Demon hunting: Physicists confirm 67-year-old prediction of massless, neutral composite particle
(via sciencedaily.com) 
In 1956, theoretical physicist David Pines predicted that electrons in a solid can do something strange. While they normally have a mass and an electric charge, Pines asserted that they can combine to form a composite particle that is massless, neutral, and does not interact with light. He called this particle a 'demon.' Now, researchers have finally found Pines' demon 67 years after it was predicted.
Published Researchers design efficient iridium catalyst for hydrogen generation
(via sciencedaily.com) 
Proton exchange membrane water electrolyzers converts surplus electric energy into transportable hydrogen energy as a clean energy solution. However, slow oxygen evolution reaction rates and high loading levels of expensive metal oxide catalysts limit its practical feasibility. Now, researchers have developed a new tantalum oxide-supported iridium catalyst that significantly boosts the oxygen evolution reaction speed. Additionally, it shows high catalytic activity and long-term stability in prolonged single cell operation.
Published Microbial corrosion of iron
(via sciencedaily.com) 
Iron is well-known for rusting, but this doesn't just happen on contact with oxygen and water. Some bacteria are also able to able to decompose iron anaerobically in a process referred to as electrobiocorrosion. The sediment-dwelling bacterium Geobacter sulfurreducens uses electrically conductive protein threads for this purpose. They produce magnetite from the iron, which promotes further corrosion in a positive feedback loop.