Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Anthropology: General, Energy: Nuclear
Published Elemental research: Scientists apply boron to tungsten components in fusion facilities
(via sciencedaily.com) 
Scientists at have conducted research showing that a powder dropper can successfully drop boron powder into high-temperature plasma within tokamaks that have parts made of a heat-resistant material known as tungsten.
Published The electron slow motion: Ion physics on the femtosecond scale
(via sciencedaily.com) 
How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research -- for example in nuclear fusion research, when the walls of the fusion reactor are bombarded by high-energy ions. However, it is difficult to understand the temporal sequence of such processes. A research group has now succeeded in analyzing on a time scale of one femtosecond what happens to the individual particles involved when an ion penetrates materials such as graphene or molybdenum disulphide.
Published 2D array of electron and nuclear spin qubits opens new frontier in quantum science
(via sciencedaily.com) 
By using photons and electron spin qubits to control nuclear spins in a two-dimensional material, researchers have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.
Published Upgrade for magnetic resonance methods with a 1,000-fold amplifier
(via sciencedaily.com) 
Researchers determine the structure and dynamics of proteins using NMR (Nuclear Magnetic Resonance) spectroscopy. Until now, however, much higher concentrations were necessary for in-vitro measurements of the biomolecules in solution than found in our body's cells. An NMR method enhanced by a very powerful amplifier, in combination with molecular dynamics simulation, now enables their detection and accurate characterization at physiological concentrations.
Published A better way to quantify radiation damage in materials
(via sciencedaily.com) 
Researchers find much of the damage inside nuclear reactors is so small that it has eluded previous tests. Their new tool provides a way to directly measure this damage, potentially opening a path for the safe operation of nuclear power plants far beyond their present licensed lifetimes.
Published Suspended sediment reduced by rapid revegetation after Fukushima decontamination
(via sciencedaily.com) 
Researchers have found that soil decontamination efforts following the Fukushima nuclear accident resulted in constant, high levels of suspended river sediment downstream, but a rapid decrease in the amount of particulate radiocesium. Additionally, the rapid recovery of vegetation reduced the duration of unsustainable sediment effects. Future remediation projects should assess the natural restoration ability of local landscapes, and include appropriate revegetation measures to reduce the effects on downstream environments.
Published Listening to the people results in a more sustainable future energy system
(via sciencedaily.com) 
By taking into account the demographics and preferences of US racial groups, clarified through a nationally representative survey of 3,000 US residents, researchers have created a 'desirable' electricity generation mix for 2050 that includes 50% more energy from renewables than current projections. Combining such bottom-up input with top-down energy system goals set by policymakers could help meet both the needs and preferences of the population along with emission and climate goals.
Published Smaller, stronger magnets could improve devices that harness the fusion power of the sun and stars
(via sciencedaily.com) 
PPPL researchers have found a way to build powerful magnets smaller than before, aiding the design and construction of machines that could help the world harness the power of the sun to create electricity without producing greenhouse gases that contribute to climate change.
Published Chemists unlock secrets of molten salts
(via sciencedaily.com) 
Researchers have come up with a novel way to study the thermodynamic properties of molten salts, which are used in many nuclear and solar energy applications.
Published Go with the flow: New findings about moving electricity could improve fusion devices
(via sciencedaily.com) 
Researchers have found that updating a mathematical model to include a physical property known as resistivity could lead to the improved design of doughnut-shaped fusion facilities known as tokamaks.
Published Scientists propose solution to a long-puzzling fusion problem
(via sciencedaily.com) 
Researchers demonstrate explanation of paradox that could apply to all spherical tokamaks, cost-effective candidates to model a fusion pilot plant.
Published X-rays help researchers piece together treasured cellular gateway
(via sciencedaily.com) 
After almost two decades of synchrotron experiments, scientists have captured a clear picture of a cell's nuclear pores, which are the doors and windows through which critical material in your body flows in and out of the cell's nucleus. These findings could lead to new treatments of certain cancers, autoimmune diseases and heart conditions.
Published Laser creates a miniature magnetosphere
(via sciencedaily.com) 
A research team realized magnetic reconnection driven by electron dynamics in laser-produced plasmas and measured the pure electron outflows. Their findings will be applied not only to space and astrophysical plasmas, but also to magnetic propulsion and fusion plasmas.
Published New feedback system can improve efficiency of fusion reactions
(via sciencedaily.com) 
Scientists have refined the use of magnetic fields to improve the performance of doughnut-shaped fusion facilities known as tokamaks. The improved technique protects internal parts from damage by instabilities and allows tokamaks to operate for longer without pausing.
Published Chemists design chemical probe for detecting minute temperature shifts in the body
(via sciencedaily.com) 
A chemistry team has engineered a cobalt complex to act as a noninvasive chemical thermometer. They've done so by making the cobalt complex's nuclear spin -- a workhorse, fundamental magnetic property -- mimic the agile, but less stable sensitivity of an electron's spin.
Published Physicists announce first results from The Daya Bay Neutrino Experiment's final dataset
(via sciencedaily.com) 
Over nearly nine years, the Daya Bay Reactor Neutrino Experiment captured an unprecedented five and a half million interactions from subatomic particles called neutrinos. Now, the international team of physicists has reported the first result from the experiment's full dataset -- the most precise measurement yet of theta13, a key parameter for understanding how neutrinos change their 'flavor.' The result will help physicists explore some of the biggest mysteries surrounding the nature of matter and the universe.
Published Nuclear physics and extreme environments of cosmic explosions
(via sciencedaily.com) 
Researchers have helped peer inside a nova -- a type of astrophysical nuclear explosion -- without leaving Earth. These stellar events help forge the universe's chemical elements, and astronomers have explored their nature with an intense isotope beam and a custom experimental device with record-setting sensitivity.
Published Researchers reveal the origin story for carbon-12, a building block for life
(via sciencedaily.com) 
After running simulations on the world's most powerful supercomputer, an international team of researchers has developed a theory for the nuclear structure and origin of carbon-12, the stuff of life. The theory favors the production of carbon-12 in the cosmos.
Published Confirmed: Atmospheric helium levels are rising
(via sciencedaily.com) 
Scientists used an unprecedented technique to detect that levels of helium are rising in the atmosphere, resolving an issue that has lingered among atmospheric chemists for decades.
Published Researchers design simpler magnets for twisty facilities that could lead to steady-state fusion operation
(via sciencedaily.com) 
Scientists have used a mathematical technique to design powerful magnets with straighter shapes for stellarator fusion facilities, allowing for easier manufacturing and maintenance.