Showing 20 articles starting at article 161

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries

Return to the site home page

Energy: Batteries Energy: Technology
Published

Electric vehicle batteries could get big boost with new polymer coating      (via sciencedaily.com) 

Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.

Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Controlling electric double layer dynamics for next generation all-solid-state batteries      (via sciencedaily.com) 

Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.

Chemistry: General Energy: Batteries Energy: Technology
Published

Extreme fast charging capability in lithium-ion batteries      (via sciencedaily.com) 

Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.

Energy: Batteries Energy: Technology Geoscience: Environmental Issues
Published

New design for lithium-air battery could offer much longer driving range compared with the lithium-ion battery      (via sciencedaily.com) 

Scientists have built and tested for a thousand cycles a lithium-air battery design that could one day be powering cars, domestic airplanes, long-haul trucks and more. Its energy storage capacity greatly surpasses that possible with lithium-ion batteries.

Energy: Batteries Energy: Fossil Fuels Energy: Technology Engineering: Graphene
Published

Ramping up domestic graphite production could aid the green energy transition      (via sciencedaily.com) 

Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.

Computer Science: General Energy: Batteries Energy: Technology
Published

New technology turns smartphones into RFID readers, saving costs and reducing waste      (via sciencedaily.com) 

Imagine you can open your fridge, open an app on your phone and immediately know which items are expiring within a few days. This is one of the applications that a new technology would enable.

Energy: Batteries Energy: Technology
Published

Novel microscope developed to design better high-performance batteries      (via sciencedaily.com) 

A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.

Energy: Batteries
Published

Beyond lithium: A promising cathode material for magnesium rechargeable batteries      (via sciencedaily.com) 

Magnesium is a promising candidate as an energy carrier for next-generation batteries. However, the cycling performance and capacity of magnesium batteries need to improve if they are to replace lithium-ion batteries. To this end, a research team focused on a novel cathode material with a spinel structure. Following extensive characterization and electrochemical performance experiments, they have found a specific composition that could open doors to high-performance magnesium rechargeable batteries.

Energy: Batteries Energy: Technology Physics: Optics
Published

Controllable 'defects' improve performance of lithium-ion batteries      (via sciencedaily.com) 

Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.

Energy: Batteries Energy: Technology
Published

New sodium, aluminum battery aims to integrate renewables for grid resiliency      (via sciencedaily.com) 

A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.

Energy: Batteries
Published

Researchers decipher atomic-scale imperfections in lithium-ion batteries      (via sciencedaily.com) 

Scientists have conducted a detailed examination of high-nickel-content layered cathodes, considered to be components of promise in next-generation lithium-ion batteries. Advanced electron microscopy and deep machine learning enabled the team to observe atomic-scale changes at the interface of materials that make up the batteries.

Energy: Batteries Energy: Technology Engineering: Graphene
Published

Recyclable mobile phone batteries a step closer with rust-busting invention      (via sciencedaily.com) 

Mobile phone batteries with a lifetime up to three times longer than today's technology could be a reality thanks to a recent innovation.

Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Geoscience: Environmental Issues
Published

How plants are inspiring new ways to extract value from wastewater      (via sciencedaily.com) 

Scientists are drawing inspiration from plants to develop new techniques to separate and extract valuable minerals, metals and nutrients from resource-rich wastewater.

Energy: Batteries
Published

Researchers create smaller, cheaper flow batteries for clean energy      (via sciencedaily.com) 

Flow batteries offer a solution. Electrolytes flow through electrochemical cells from storage tanks in this rechargeable battery. The existing flow battery technologies cost more than $200/kilowatt hour and are too expensive for practical application, but engineers have now developed a more compact flow battery cell configuration that reduces the size of the cell by 75%, and correspondingly reduces the size and cost of the entire flow battery. The work could revolutionize how everything from major commercial buildings to residential homes are powered.

Energy: Batteries Engineering: Nanotechnology
Published

Novel design helps develop powerful microbatteries      (via sciencedaily.com) 

Translating electrochemical performance of large format batteries to microscale power sources has been a long-standing technological challenge, limiting the ability of batteries to power microdevices, microrobots and implantable medical devices. Researchers have created a high-voltage microbattery (> 9 V), with high-energy and -power density, unparalleled by any existing battery design.

Energy: Batteries
Published

New battery could prevent post-hurricane electric vehicle fires      (via sciencedaily.com) 

A researcher has developed technology that could prevent electric vehicle fires, like those caused by saltwater flooding from Hurricane Ian. The technology, an aqueous battery, replaces the volatile and highly flammable organic solvents found in electric vehicle lithium-ion batteries with saltwater to create a battery that is safer, faster charging, just as powerful and won't short circuit during flooding.

Energy: Batteries
Published

Lithium-sulfur batteries are one step closer to powering the future      (via sciencedaily.com) 

A research team has built and tested a new interlayer to prevent dissolution of the sulfur cathode in lithium-sulfur batteries. This new interlayer increases Li-S cell capacity and maintains it over hundreds of cycles.

Energy: Batteries
Published

Efficient sodium-ion battery anode for energy storage      (via sciencedaily.com) 

Lithium is expensive and limited, necessitating the development of efficient energy storage systems beyond lithium-ion batteries. Sodium is a promising candidate. However, sodium ions, being large and sluggish, hamper sodium-ion battery (SIB) anode performance. Researchers have recently developed pyrolyzed quinacridones, new carbonaceous SIB anode materials, that are efficient, easily prepared, and exhibit excellent electrochemical properties, including high sodium-ion storage performance and cycling stability.

Energy: Batteries
Published

Development of next-generation solid electrolyte technology, 'stable' even when exposed to the atmosphere      (via sciencedaily.com) 

Engineers have announced the development of solid electrolytes with enhanced atmospheric stability.

Energy: Batteries Engineering: Robotics Research
Published

Designing better battery electrolytes      (via sciencedaily.com) 

Scientists give the lay of the land in the quest for electrolytes that could enable revolutionary battery chemistries.