Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Geochemistry
Published Chemical synthesis: New strategy for skeletal editing on pyridines
(via sciencedaily.com)
Original source 
A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.
Published Lighting the path: Exploring exciton binding energies in organic semiconductors
(via sciencedaily.com)
Original source 
Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power
(via sciencedaily.com)
Original source 
In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Efficiently moving urea out of polluted water is coming to reality
(via sciencedaily.com)
Original source 
Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.
Published Cobalt-free batteries could power cars of the future
(via sciencedaily.com)
Original source 
A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published Rain can spoil a wolf spider's day, too
(via sciencedaily.com)
Original source 
Researchers found that wolf spiders can't signal others or perceive danger from predators as easily on rain-soaked leaves compared to dry ones. Even communicating with would-be mates is harder after it rains.
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water
(via sciencedaily.com)
Original source 
Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published US air pollution rates on the decline but pockets of inequities remain
(via sciencedaily.com)
Original source 
Our latest study shows there are racial/ethnic and socioeconomic disparities in air pollution emissions reductions, particularly in the industry and energy generation sectors. The findings provide a national investigation of air pollution emission changes in the 40 years following the enactment of the Clean Air Act (CAA). Until now, studies have primarily focused on evaluating air pollution disparities at a single time point, focusing on pollutant concentrations instead of emissions. A focus on emissions, however, has more direct implications for regulations and policies. In this study, the researchers used county-level data to evaluate racial/ethnic and socioeconomic disparities in air pollution emissions changes in the contiguous U.S. from 1970 to 2010.
Published Glowing COVID-19 diagnostic test prototype produces results in one minute
(via sciencedaily.com)
Original source 
Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.
Published New AI makes better permafrost maps
(via sciencedaily.com)
Original source 
New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.
Published Artificial 'power plants' harness energy from wind and rain
(via sciencedaily.com)
Original source 
Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.
Published Study reveals a reaction at the heart of many renewable energy technologies
(via sciencedaily.com)
Original source 
Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Cryo-microscopy reveals nano-sized copy machine implicated in origin of life
(via sciencedaily.com)
Original source 
RNA is thought to have sparked the origin of life by self-copying. Researchers have now revealed the atomic structure of an 'RNA copy machine' through cryo-EM. This breakthrough sheds light on a primordial RNA world and fuels advancements in RNA nanotechnology and medicine.
Published The power of pause: Controlled deposition for effective and long-lasting organic devices
(via sciencedaily.com)
Original source 
In organic optoelectronic devices, the control of molecular deposition on thin films is important for optimal surface arrangement and device performance. In a recent study, researchers developed a new method for achieving stable deposition on thin films effectively. They also developed a tool to track real-time potential changes on the surface. These findings are expected to aid the improvement of organic devices, such as organic light-emitting diodes, in terms of efficacy and durability.
Published More aerosol particles than thought are forming over Siberia, study finds
(via sciencedaily.com)
Original source 
A new study finds that, contrary to previous beliefs, large amounts of aerosol particles can form over vast areas of the West Siberian taiga in the spring. When temperatures rise, this can have a significant impact on the climate.
Published Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production
(via sciencedaily.com)
Original source 
Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.
Published New catalytic technique creates key component of incontinence drug in less time
(via sciencedaily.com)
Original source 
Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.
Published Capturing greenhouse gases with the help of light
(via sciencedaily.com)
Original source 
Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Spying on a shape-shifting protein
(via sciencedaily.com)
Original source 
Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Study uncovers potential origins of life in ancient hot springs
(via sciencedaily.com)
Original source 
A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.