Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Environmental: Biodiversity
Published Historic map reveals how mussel farm is bringing shellfish reefs back to the seabed



New analysis has shown that the UK's first large scale offshore mussel farm might in fact serve as a form of restoration rather than creating habitats never seen in the area before. A map dating from 1871 shows a large area of the seabed -- stretching from Torquay in the west and beyond Lyme Regis to the east -- as being home to 'rich shell beds'. The region has now been transformed from muddy sediment with limited biodiversity into reefs, which research has shown have the potential to benefit a number of commercial fish and crustacean species and the ecosystem more generally.
Published Ecologists put an insect group on century-old map of biodiversity



The distribution of species around the globe is not a random process but an outcome resulting from several evolutionary mechanisms as well as past and current environmental limitations. As a result, since the mid-19th century, biologists have identified several main regions, called biogeographic realms, that depict these large ensembles of species around the world. These biogeographic realms represent one of the most fundamental descriptions of biodiversity on Earth and are commonly used in various fields of biology.
Published Scientists condition crocodiles to avoid killer cane toads



Scientists have trialled a new way to protect freshwater crocodiles from deadly invasive cane toads spreading across northern Australia.
Published Chemists synthesize plant-derived molecules that hold potential as pharmaceuticals



Chemists developed a way to synthesize complex molecules called oligocyclotryptamines, originally found in plants, which could hold potential as antibiotics, analgesics, or anticancer drugs.
Published Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated



A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.
Published Study reveals urban trees suffer more from heat waves and drought than their rural counterparts



A recent study details how trees in New York City and Boston are more negatively impacted by heat waves and drought than trees of the same species in nearby rural forests. The finding highlights the challenges urban trees face in the context of climate change and underscores the importance of tailored urban forestry management as a tool for protecting tree species and reducing urban heat islands.
Published Expansion of agricultural land threatens climate and biodiversity



Food, feed, fiber, and bioenergy: The demand for agricultural raw materials is rising. How can additional cultivation areas be reconciled with nature conservation? Researchers have developed a land-use model that provides answers.
Published Protecting surf breaks mitigates climate change, helps coastal communities



Safeguarding places to hang ten and shoot the curl is an opportunity to simultaneously mitigate climate change, fuel tourism and help surrounding ecosystems, research has shown.
Published Forest restoration can boost people, nature and climate simultaneously



Forest restoration can benefit humans, boost biodiversity and help tackle climate change simultaneously, new research suggests.
Published Why carbon nanotubes fluoresce when they bind to certain molecules



Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.
Published Glossy black-cockatoos prefer the fruits of ancient rocks



New research has shown that glossy black-cockatoos prefer to feed from trees growing in acidic soils.
Published Nature at risk in the hunt for the perfect selfie



The need for a dramatic selfie or the perfect landscape photo is proving detrimental to nature, a new research collaboration has found.
Published Pioneering plasma-catalytic process for CO2 hydrogenation to methanol under ambient conditions



A research team reports a pioneering plasma-catalytic process for the hydrogenation of CO2 to methanol at room temperature and atmospheric pressure. This breakthrough addresses the limitations of traditional thermal catalysis, which often requires high temperatures and pressures, resulting in low CO2 conversion and methanol yield.
Published Effective new catalyst brings hope for cleaner energy, wastewater treatment, and green chemistry



A catalyst that significantly enhances ammonia conversion could improve wastewater treatment, green chemical and hydrogen production.
Published Chemists develop new sustainable reaction for creating unique molecular building blocks



Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.
Published Breakthrough in molecular control: New bioinspired double helix with switchable chirality



The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.
Published Forever chemical pollution can now be tracked



Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.
Published Elephants on the move: Mapping connections across African landscapes



Elephant conservation is a major priority in southern Africa, but habitat loss and urbanization mean the far-ranging pachyderms are increasingly restricted to protected areas like game reserves. The risk? Contained populations could become genetically isolated over time, making elephants more vulnerable to disease and environmental change.
Published Stacking molecules like plates improves organic solar device performance



Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.
Published The race to discover biodiversity: 11 new marine species and a new platform for rapid species description



A new paper describes a ground-breaking experiment that united 25 independent taxonomists from 10 countries. The initiative boasts the discovery of 11 new marine species from all over the globe, occurring at depths from 5.2 to 7081 meters. It also represents a significant step forward in accelerating the pace at which new marine species are described and published.