Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Knots smaller than human hair make materials unusually tough      (via sciencedaily.com) 

A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Deconstructing tough, woody lignin      (via sciencedaily.com) 

It's a tough job, but someone's got to do it. In this case, the 'job' is the breakdown of lignin, the structural biopolymer that gives stems, bark and branches their signature woodiness. One of the most abundant terrestrial polymers on Earth, lignin surrounds valuable plant fibers and other molecules that could be converted into biofuels and other commodity chemicals -- if we could only get past that rigid plant cell wall.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Space: Exploration Space: General Space: The Solar System
Published

Scientists call for global push to eliminate space junk      (via sciencedaily.com) 

As almost 200 countries agree a legally-binding treaty to protect the High Seas, a collaboration of experts in ocean plastic pollution and satellite technology has urged world leaders to learn lessons from the management of the High Seas and act now to protect Earth's orbit.

Environmental: Ecosystems Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Life in the smoke of underwater volcanoes      (via sciencedaily.com) 

Disconnected from the energy of the sun, the permanently ice-covered Arctic deep sea receives miniscule amounts of organic matter that sustains life. Bacteria which can harvest the energy released from submarine hydrothermal sources could thus have an advantage. Scientists found bacteria uniquely adapted to this geo-energy floating in deep-sea waters. They describe the role of these bacteria for biogeochemical cycling in the ocean.

Biology: Biotechnology Biology: Microbiology Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New biosensor reveals activity of elusive metal that's essential for life      (via sciencedaily.com) 

A new biosensor offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

A safe synthesis of hydrogen peroxide inspired by nature      (via sciencedaily.com) 

Scientists report the safe synthesis of hydrogen peroxide (H2O2), an oxidizing agent used in multiple industries including semiconductors, using a new rhodium-based catalyst. The catalyst is based on natural enzymes found in extremophile microorganisms, and the reaction meets three chemical ideals for H2O2 production: safe, use of a single vessel, and direct synthesis.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Colloids get creative to pave the way for next generation photonics      (via sciencedaily.com) 

Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Electrocatalysis under the atomic force microscope      (via sciencedaily.com) 

A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Environmental: General Geoscience: Environmental Issues Geoscience: Oceanography
Published

Records from Platform Holly provide a glimpse of how petroleum production affects natural gas seeps      (via sciencedaily.com)     Original source 

From oil rigs to tar seeps, it's hard to miss the presence of petroleum around the Santa Barbara Channel. Scientists have now investigated the interplay between the two processes releasing oil from underground: human enterprise and regional geology.

Biology: Marine Ecology: Sea Life Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Unprecedented increase in ocean plastic since 2005 revealed by four decades of global analysis      (via sciencedaily.com) 

A global dataset of ocean plastic pollution between 1979 and 2019 reveals a rapid and unprecedented increase in ocean plastics since 2005, according to a new study.

Chemistry: Inorganic Chemistry Physics: General
Published

A surprising way to trap a microparticle      (via sciencedaily.com) 

New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: Computers and Math Physics: General
Published

Viable superconducting material created, say researchers      (via sciencedaily.com) 

Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Enhancing at-home COVID tests with glow-in-the dark materials      (via sciencedaily.com) 

Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Oceanography Paleontology: Climate
Published

Elegantly modeling Earth's abrupt glacial transitions      (via sciencedaily.com)     Original source 

Milutin Milankovitch hypothesized that the timing of glacial transitions has been controlled by the orbital parameters of the Earth, which suggests that there may be some predictability in the climate, a notoriously complex system. Now researchers propose a new paradigm to simplify the verification of the Milankovitch hypothesis. The new 'deterministic excitation paradigm' combines the physics concepts of relaxation oscillation and excitability to link Earth's orbital parameters and the glacial cycles in a more generic way.

Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Controlling electric double layer dynamics for next generation all-solid-state batteries      (via sciencedaily.com) 

Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.

Chemistry: Inorganic Chemistry Physics: Optics
Published

The positive outlooks of studying negatively-charged chiral molecules      (via sciencedaily.com) 

The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.

Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Sea level rise poses particular risk for Asian megacities      (via sciencedaily.com)     Original source 

Sea level rise this century may disproportionately affect certain Asian megacities, according to new research that looks at the effects of natural sea level fluctuations in addition to climate change. The study identified several Asian megacities that may face especially significant risks by 2100, including Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City, and Manila.

Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Ocean surface tipping point could accelerate climate change      (via sciencedaily.com)     Original source 

A study has found that intense global warming could shut down the ocean's ability to soak up carbon dioxide, leading to accelerated global warming as the greenhouse gas accumulates in the atmosphere. The decline happens because of a surface layer of low-alkalinity water that emerges during extreme warming that hinders the ability of the oceans to absorb CO2. The study is based on a climate simulation configured to a worst-case emissions scenario that the researchers say must be avoided at all costs.

Geoscience: Geology Geoscience: Oceanography Paleontology: Climate
Published

Most detailed geological model reveals Earth's past 100 million years      (via sciencedaily.com) 

Previous models of Earth's recent (100 million years) geomorphology have been patchy at best. For the first time a detailed continuous model of the Earth's landscape evolution is presented, with potential for understanding long-term climate and biological development.