Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Two-dimensional nanoparticles with great potential      (via sciencedaily.com)     Original source 

A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Physics: General
Published

Discovery of ferroelectricity in an elementary substance      (via sciencedaily.com)     Original source 

Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

A new type of photonic time crystal gives light a boost      (via sciencedaily.com)     Original source 

Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Opening a new frontier: PdMo intermetallic catalyst for promoting CO2 utilization      (via sciencedaily.com)     Original source 

A recently discovered catalyst, can convert carbon dioxide (CO2) into useful methanol at room temperature and low-pressure conditions. This novel compound, which is thermally and chemically stable in air, represents a new milestone in CO2 conversion via hydrogenation and could be key to slow down climate change.

Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Paleontology: Climate Paleontology: General
Published

Ice sheets can collapse faster than previously thought possible      (via sciencedaily.com)     Original source 

Ice sheets can retreat up to 600 meters a day during periods of climate warming, 20 times faster than the highest rate of retreat previously measured. An international team of researchers used high-resolution imagery of the seafloor to reveal just how quickly a former ice sheet that extended from Norway retreated at the end of the last Ice Age, about 20,000 years ago.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Scientists use computational modeling to design 'ultrastable' materials      (via sciencedaily.com)     Original source 

Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Discovery of crucial clue to accelerate development of carbon-neutral porous materials      (via sciencedaily.com)     Original source 

A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology
Published

Major storage capacity in water-based batteries      (via sciencedaily.com)     Original source 

Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.

Chemistry: Inorganic Chemistry Physics: Optics Space: Exploration Space: General
Published

Researchers devise new membrane mirrors for large space-based telescopes      (via sciencedaily.com)     Original source 

Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle and then reshaped after deployment.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Geoscience: Geochemistry
Published

Strong ultralight material could aid energy storage, carbon capture      (via sciencedaily.com)     Original source 

Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Thermal paint: MXene spray coating can harness infrared radiation for heating or cooling      (via sciencedaily.com)     Original source 

An international team of researchers has found that a thin coating of MXene -- a type of two-dimensional nanomaterial -- could enhance a material's ability to trap or shed heat. The discovery, which is tied to MXene's ability to regulate the passage of ambient infrared radiation, could lead to advances in thermal clothing, heating elements and new materials for radiative heating and cooling.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Marine Ecology: General Ecology: Research Ecology: Sea Life Environmental: Ecosystems Geoscience: Earth Science Geoscience: Geography Geoscience: Oceanography
Published

Scientists discover hidden crab diversity among coral reefs      (via sciencedaily.com) 

The Indo-West Pacific is the largest marine ecosystem on Earth, but scientists who study its diversity have to contend with a problem so well-known it was remarked upon by Charles Darwin: related species in the IWP have similar appearances, making it difficult to assess just how many there are. A new study reveals that nearly identical crab species have one consistently distinguishing feature, which only evolves when their ranges overlap.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Geochemistry
Published

Mimicking biological enzymes may be key to hydrogen fuel production      (via sciencedaily.com) 

An ancient biological enzyme known as nickel-iron hydrogenase may play a key role in producing hydrogen for a renewables-based energy economy, researchers said. Careful study of the enzyme has led chemists to design a synthetic molecule that mimics the hydrogen gas-producing chemical reaction performed by the enzyme.

Ecology: General Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Most of world's salt marshes likely to be underwater by 2100, study concludes      (via sciencedaily.com) 

Salt marshes are some of the most biologically productive ecosystems on Earth. They play an outsized role in nitrogen cycling, act as carbon sinks, protect coastal development from storm surge, and provide critical habitats and nurseries for many fish, shellfish, and coastal birds. According to new research, more than 90 percent of the world's salt marshes are likely to be underwater by the end of the century. These findings come from a 50-year study of ecosystem changes in Great Sippewissett Marsh in Falmouth, Mass.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists design new molecule, with oxygen as the star of the show      (via sciencedaily.com) 

Chemists have achieved a new feat in the realm of chemical design and synthesis: They've helped create the first example of a synthetic molecule, with an asymmetric oxygen atom as its centerpiece, that remains stable and nonreactive -- despite this type of molecule's tendency in nature to be touchy and short-lived. What makes this feat unique is that the new molecule is chiral, which means it has a non-superimposable mirror image.

Biology: General Biology: Marine Ecology: Sea Life Geoscience: Oceanography
Published

Juvenile black rockfish affected by marine heat wave but not always for the worse, research shows      (via sciencedaily.com) 

Larvae produced by black rockfish, a linchpin of the West Coast commercial fishing industry for the past eight decades, fared better during two recent years of unusually high ocean temperatures than had been feared, new research finds.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials      (via sciencedaily.com)     Original source 

Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Energy-efficient and customizable inorganic membranes for a cleaner future      (via sciencedaily.com) 

A team of researchers has developed a revolutionary technique for producing ultrathin inorganic membranes. These inorganic membranes are not just energy-efficient but also highly customizable for different applications, such as filtration, separation, energy conversion, catalysis and sensing. This ground-breaking achievement could potentially revolutionize the way many industries operate for greater sustainability.