Showing 20 articles starting at article 1221
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Geoscience: Geography
Published How pulsating pumping can lead to energy savings
(via sciencedaily.com) 
Pumping liquids may seem like a solved problem but optimizing the process is still an area of active research. Any pumping application -- from industrial scales to heating systems at home -- would benefit from a reduction in energy demands. Researchers now showed how pulsed pumping can reduce both friction from and energy consumption of pumping. For this, they took inspiration from a pumping system intimately familiar to everyone: the human heart.
Published Fossil spines reveal deep sea's past
(via sciencedaily.com)
Original source 
Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.
Published Pioneering beyond-silicon technology via residue-free field effect transistors
(via sciencedaily.com) 
Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.
Published Bit by bit, microplastics from tires are polluting our waterways
(via sciencedaily.com) 
Urban stormwater particles from tire wear were the most prevalent microplastic a new study has found. The study showed that in stormwater runoff during rain approximately 19 out of every 20 microplastics collected were tire wear particles with anywhere from 2 to 59 particles per liter of water. Tire rubber contains up to 2500 chemicals with the contaminants that leach from tires considered more toxic to bacteria and microalgae than other plastic polymers.
Published Blowing snow contributes to Arctic warming
(via sciencedaily.com)
Original source 
Atmospheric scientists have discovered abundant fine sea salt aerosol production from wind-blown snow in the central Arctic, increasing seasonal surface warming.
Published Extreme El Niño weather saw South America's forest carbon sink switch off
(via sciencedaily.com)
Original source 
Tropical forests in South America lose their ability to absorb carbon from the atmosphere when conditions become exceptionally hot and dry, according to new research. For a long time, tropical forests have acted as a carbon sink, taking more carbon out of the air than they release into it, a process that has moderated the impact of climate change. But new research found that in 2015 -- 2016, when an El Niño climate event resulted in drought and the hottest temperatures ever recorded, South American forests were unable to function as a carbon sink.
Published Better cybersecurity with new material
(via sciencedaily.com) 
Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Groundwater depletion rates in India could triple in coming decades as climate warms, study shows
(via sciencedaily.com)
Original source 
A new study finds that farmers in India have adapted to warming temperatures by intensifying the withdrawal of groundwater used for irrigation. If the trend continues, the rate of groundwater loss could triple by 2080, further threatening India's food and water security. Reduced water availability in India due to groundwater depletion and climate change could threaten the livelihoods of more than one-third of the country's 1.4 billion residents and has global implications.
Published New research explains 'Atlantification' of the Arctic Ocean
(via sciencedaily.com)
Original source 
New research by an international team of scientists explains what's behind a stalled trend in Arctic Ocean sea ice loss since 2007. The findings indicate that stronger declines in sea ice will occur when an atmospheric feature known as the Arctic dipole reverses itself in its recurring cycle. The many environmental responses to the Arctic dipole are described in a recent article. This analysis helps explain how North Atlantic water influences Arctic Ocean climate. Scientists call it Atlantification.
Published Antarctic ice shelves thinner than previously thought
(via sciencedaily.com)
Original source 
As global ice dams begin to weaken due to warming temperatures, a new study suggests that prior attempts to evaluate the mass of the huge floating ice shelves that line the Antarctic ice sheet may have overestimated their thickness.
Published Striking gold with molecular mystery solution for potential clean energy
(via sciencedaily.com) 
Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published Peering into nanofluidic mysteries one photon at a time
(via sciencedaily.com)
Original source 
Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Published A step closer to digitizing the sense of smell: Model describes odors better than human panelists
(via sciencedaily.com) 
A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.
Published Growing triple-decker hybrid crystals for lasers
(via sciencedaily.com) 
By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Watching a bimetallic catalytic surface in action
(via sciencedaily.com) 
A team of researchers addressed the question: what happens to a Ga-promoted Cu surface under reaction conditions required for the synthesis of methanol? They found complex structural transformations of this bimetallic catalyst that might change the common view on the catalytically active surface structure.
Published A global observatory to monitor Earth's biodiversity
(via sciencedaily.com)
Original source 
At a time of unparalleled rates of biodiversity loss, a new interconnected system to monitor biodiversity around the world is needed to guide action quickly enough to target conservation efforts to where they are most needed.
Published Evolutionary imbalance explains global plant invasions
(via sciencedaily.com)
Original source 
Plant species from certain geographic regions are more successful in spreading outside their native ranges than others -- but why? Ecologists provide answers by exploring how the ecological and evolutionary histories of plants can influence their relationships with humans and their success as invaders.
Published Tiny mineral inclusions picture the chemical exchange between Earth's mantle and atmosphere
(via sciencedaily.com)
Original source 
Using synchrotron techniques, scientists have unveiled important information on The Great Oxidation Event by studying apatite inclusions in zircon crystals from old magmas.
Published Arctic soil methane consumption may be larger than previously thought and increases in a drier climate
(via sciencedaily.com)
Original source 
A recent study finds that Arctic soil methane uptake may be larger than previously thought, and that methane uptake increases under dry conditions and with availability of labile carbon substrates.
Published Coastal fisheries show surprising resilience to marine heat waves
(via sciencedaily.com) 
New research found that marine heat waves -- prolonged periods of unusually warm ocean temperatures -- haven't had a lasting effect on the fish communities that feed most of the world. The finding is in stark contrast to the devastating effects seen on other marine ecosystems cataloged by scientists after similar periods of warming, including widespread coral bleaching and harmful algal blooms.